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Mathematical analysis and experimental measurement show that in a loaded struc-
tural member, near changes in the section, distributions of stress occur in which the
peak stress reaches much larger magnitudes than does the average stress over the sec-
tion. This increase in peak stress near holes, grooves, notches, sharp corners, cracks,
and other changes in section is called stress concentration. The section variation
that causes the stress concentration is referred to as a stress raiser. Although an ex-
tensive collection of stress concentration factors is tabulated in this chapter, a much
larger collection is provided in Ref. [6.1].

6.1 NOTATION

The units for some of the definitions are given in parentheses, using L for length and
F for force.

Kε Effective strain concentration factor
K f Effective stress concentration factor for cyclic loading, fatigue notch factor

Ki Effective stress concentration factor for impact loads
Kσ Effective stress concentration factor
Kt Theoretical stress concentration factor in elastic range, = σmax/σnom

q Notch sensitivity index
q f Notch sensitivity index for cyclic loading
qi Notch sensitivity index for impact loading

r Notch radius (L)
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256 STRESS CONCENTRATION

εnom Nominal strain (L/L)
σnom Nominal stress (F/L2) of notched member; for example, for an extension

member, σnom is usually taken to be the axial load divided by the cross-
sectional area measured at the notch (i.e., area taken remotely from notch
minus area corresponding to notch). In practice, the definition of the refer-
ence stress σnom depends on the problem at hand. In Table 6-1 the reference
stress is defined for each particular stress concentration factor.

6.2 STRESS CONCENTRATION FACTORS

Figure 6-1 shows a large plate that contains a small circular hole. For an applied
uniaxial tension the stress field is found from linear elasticity theory [6.2]. In polar
coordinates the azimuthal component of stress at point P is given as

σθ = 1
2σ
[
1 + (r2/ρ2)

]
− 1

2σ
[
1 + 3(r4/ρ4)

]
cos 2θ (6.1)

The maximum stress occurs at the sides of the hole where ρ = r and θ = 1
2π or

θ = 3
2π . At the hole sides,

σθ = 3σ

The peak stress is three times the uniform stress σ .
To account for the peak in stress near a stress raiser, the stress concentration factor

or theoretical stress concentration factor is defined as the ratio of the calculated peak
stress to the nominal stress that would exist in the member if the distribution of stress

Figure 6-1: Infinite plate with a small circular hole.
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remained uniform; that is,

Kt = σmax

σnom
(6.2)

The nominal stress is found using basic strength-of-materials formulas, and the cal-
culations can be based on the properties of the net cross section at the stress raiser.
Sometimes the overall section is used in computing the nominal stress.

If σ is chosen as the nominal stress for the case shown in Fig. 6-1, the stress
concentration factor is

Kt = σmax/σnom = 3

The effect of the stress raiser is to change only the distribution of stress. Equilib-
rium requirements dictate that the average stress on the section be the same in the
case of stress concentration as it would be if there were a uniform stress distribution.
Stress concentration results not only in unusually high stresses near the stress raiser
but also in unusually low stresses in the remainder of the section.

When more than one load acts on a notched member (e.g., combined tension, tor-
sion, and bending) the nominal stress due to each load is multiplied by the stress
concentration factor corresponding to each load, and the resultant stresses are found
by superposition. However, when bending and axial loads act simultaneously, super-
position can be applied only when bending moments due to the interaction of axial
force and bending deflections are negligible compared to bending moments due to
applied loads.

The stress concentration factors for a variety of member configurations and load
types are shown in Table 6-1. A general discussion of stress concentration factors
and factor values for many special cases are contained in the literature (e.g., [6.1]).

Example 6.1 Circular Shaft with a Groove The circular shaft shown in Fig. 6-2
is girdled by a U-shaped groove, with h = 10.5 mm deep. The radius of the groove
root r = 7 mm, and the bar diameter away from the notch D = 70 mm. A bend-

Figure 6-2: Circular shaft with a U-groove.
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ing moment of 1.0 kN·m and a twisting moment of 2.5 kN·m act on the bar. The
maximum shear stress at the root of the notch is to be calculated.

The stress concentration factor for bending is found from part I in Table 6-1,
case 7b. Substitute

2h/D = 21
70 = 0.3, h/r = 10.5/7 = 1.5 (1)

into the expression given for Kt :

Kt = C1 + C2(2h/D) + C3(2h/D)2 + C4(2h/D)3 (2)

Since 0.25 ≤ h/r = 1.5 < 2.0, we find, for elastic bending,

C1 = 0.594 + 2.958
√

h/r − 0.520h/r

with C2, C3, and C4 given by analogous formulas in case I-7b of Table 6-1. These
constants are computed as

C1 = 3.44, C2 = −8.45, C3 = 11.38, C4 = −5.40

It follows that for elastic bending

Kt = 3.44 − 8.45(0.3) + 11.38(0.3)2 − 5.40(0.3)3 = 1.78 (3)

The tensile bending stress σnom is obtained from Eq. (3.56a) as Md/2I and at the
notch root the stress is

σ = Kt
Md

2I
= (1.78)(1.0 × 103 N-m)(0.049 m)(64)

2π(0.049)4 m4
= 154.1 MPa (4)

The formulas from Table 6-1, part I, case 7c, for the elastic torsional load give
Kt = 1.41. The nominal twisting stress at the base of the groove is [Eq. (3.48)]

τ = Kt T d/2

J
= Kt T d(32)

2πd4
= (1.41)(2.5 × 103 N · m)16

π(0.049)3
= 152.6 MPa (5)

The maximum shear stress at the base of the groove is one-half the difference of
the maximum and minimum principal stresses (Chapter 3). The maximum principal
stress is

σmax = 1
2σ + 1

2

√
σ 2 + 4τ 2 = 1

2 (154.1) + 1
2

√
154.12 + 4(152.6)2 = 248.0 MPa

and the minimum principal stress is

σmin = 1
2σ − 1

2

√
σ 2 + 4τ 2 = 1

2 (154.1) − 1
2

√
154.12 + 4(152.6)2 = −93.9 MPa
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Thus, the maximum shear stress is

τmax = 1
2 (σmax − σmin) = 1

2 (248.0 + 93.9) = 171.0 MPa (6)

6.3 EFFECTIVE STRESS CONCENTRATION FACTORS

In theory, the peak stress near a stress raiser would be Kt times larger than the nom-
inal stress at the notched cross section. However, Kt is an ideal value based on lin-
ear elastic behavior and depends only on the proportions of the dimensions of the
stress raiser and the notched part. For example, in case 2a, part I, Table 6-1, if h,
D, and r were all multiplied by a common factor n > 0, the value of Kt would
remain the same. In practice, a number of phenomena may act to mitigate the effects
of stress concentration. Local plastic deformation, residual stress, notch radius, part
size, temperature, material characteristics (e.g., grain size, work-hardening behav-
ior), and load type (static, cyclic, or impact) may influence the extent to which the
peak notch stress approaches the theoretical value of Kt σnom.

To deal with the various phenomena that influence stress concentration, the con-
cepts of effective stress concentration factor and notch sensitivity have been intro-
duced. The effective stress concentration factor is obtained experimentally.

The effective stress concentration factor of a specimen is defined to be the ratio
of the stress calculated for the load at which structural damage is initiated in the
specimen free of the stress raiser to the nominal stress corresponding to the load at
which damage starts in the sample with the stress raiser. It is assumed that damage in
the actual structure occurs when the maximum stress attains the same value in both
cases. Similar to Eq. (6.2):

Kσ = σmax/σnom (6.3)

The factor Kσ is now the effective stress concentration factor as determined by the
experimental study of the specimen. See Ref. [6.1] for a more detailed discussion
of Kσ .

For fatigue loading, the definition of experimentally determined effective stress
concentration is

K f = fatigue strength without notch

fatigue strength with notch
(6.4)

Factors determined by Eq. (6.4) should be regarded more as strength reduction fac-
tors than as quantities that correspond to an actual stress in the body. The fatigue
strength (limit) is the maximum amplitude of fully reversed cyclic stress that a
specimen can withstand for a given number of load cycles. For static conditions
the stress at rupture is computed using strength-of-materials elastic formulas even
though yielding may occur before rupture. If the tests are under bending or torsion
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loads, extreme fiber stress is used in the definition of Kσ and the stresses are com-
puted using the formulas σ = Mc/I and τ = T r/J (Chapter 3).

No suitable experimental definition of the effective stress concentration factor in
impact exists. Impact tests such as the Charpy or Izod tests (Chapter 4) measure the
energy absorbed during the rupture of a notched specimen and do not yield informa-
tion on stress levels.

When experimental information for a given member or load condition does not
exist, the notch sensitivity index q provides a means of estimating the effects of stress
concentration on strength. Effective stress concentration factors, which are less than
the theoretical factor, are related to Kt by the equations

Kσ = 1 + q(Kt − 1) (6.5)

K f = 1 + q f (Kt − 1) (6.6)

A similar equation could be shown for impact loads using qi as the notch sensitiv-
ity index. Often an explicit expression for the notch sensitivity index is given [e.g.,
q f = (K f − 1)/(Kt − 1)]. The notch sensitivity index can vary from 0 for complete
insensitivity to notches to 1 for the full theoretical effect. Typical values of q are
shown in Fig. 6-3.

Notch sensitivity in fatigue decreases as the notch radius decreases and as the
grain size increases. A larger part will generally have greater notch sensitivity than a
smaller part with proportionally similar dimensions. This variation is known as the
scale effect. Larger notch radii result in lower stress gradients near the notch, and
more material is subjected to higher stresses. Notch sensitivity in fatigue is therefore
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Figure 6-3: Fatigue notch sensitivity index.
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increased. Because of the low sensitivity of small notch radii, the extremely high the-
oretical stress concentration factors predicted for very sharp notches and scratches
are not actually realized. The notch sensitivity of quenched and tempered steels is
higher than that of lower-strength, coarser-grained alloys. As a consequence, for
notched members the strength advantage of high-grade steels over other materials
may be lost.

Under static loading, notch sensitivity values are recommended [6.3] as q = 0
for ductile materials and q between 0.15 and 0.25 for hard, brittle metals. The notch
insensitivity of ductile materials is caused by local plastic deformation at the notch
tip. Under conditions that inhibit plastic slip, the notch sensitivity of a ductile metal
may increase. Very low temperatures and high temperatures that cause viscous creep
are two service conditions that may increase the notch sensitivity of some ductile
metals. The notch sensitivity of cast iron is low for static loads (q ≈ 0) because of
the presence of internal stress raisers in the form of material inhomogeneities. These
internal stress raisers weaken the material to such an extent that external notches
have limited additional effect.

When a notched structural member is subjected to impact loads, the notch sensi-
tivity may increase because the short duration of the load application does not permit
the mitigating process of local slip to occur. Also, the small sections at stress raisers
decrease the capacity of a member to absorb impact energy. For impact loads, values
of notch sensitivity are recommended such as [6.3] qi between 0.4 and 0.6 for ductile
metals, qi = 1 for hard, brittle materials, and qi = 0.5 for cast irons. Reference [6.1]
recommends using the full theoretical factor for brittle metals (including cast irons)
for both static and impact loads because of the possibility of accidental shock loads
being applied to a member during handling. The utilization of fracture mechanics to
predict the brittle fracture of a flawed member under static, impact, and cyclic loads
is treated in Chapter 7.

Neuber’s Rule

Consider the stretched plate of Fig. 6-4. For nonlinear material behavior (Fig. 6-5),
where local plastic deformation can occur near the hole, the previous stress concen-
tration formulas may not apply. Neuber [6.4] established a rule that is useful beyond
the elastic limit relating the effective stress and strain concentration factors to the
theoretical stress concentration factor. Neuber’s rule contends that the formula

Kσ Kε = K 2
t (6.7)

applies to the three factors. This relation states that Kt is the geometric mean of Kσ

and Kε [i.e., Kt = (Kσ Kε)
1/2]. Often, for fatigue, K f replaces Kt . From the def-

inition of effective stress concentration, Kσ = σmax/σnom. Also, Kε = εmax/εnom
defines the effective strain concentration factor, where εmax is the strain obtained
from the material law (perhaps nonlinear) for the stress level σmax. Using these rela-
tions in Eq. (6.7) yields

σmax εmax = K 2
t σnom εnom (6.8)
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Figure 6-4: Tensile member with a hole.

Usually, Kt and σnom are known, and εnom can be found from the stress–strain curve
for the material. Equation (6.8) therefore becomes

σmax εmax = C (6.9)

where C is a known constant. Solving Eq. (6.9) simultaneously with the stress–strain
relation, the values of maximum stress and strain are found, and the true (effective)
stress concentration factor Kσ can then be determined. In this procedure the appro-
priate stress–strain curve must be known.

Neuber’s rule was derived specifically for sharp notches in prismatic bars sub-
jected to two-dimensional shear, but the rule has been applied as a useful approxima-

Figure 6-5: Stress–strain diagram for material of the tensile member of Fig. 6-4.
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tion in other cases, especially those in which plane stress conditions exist. The rule
has been shown to give poor results for circumferential grooves in shafts under axial
tension [6.5].

Example 6.2 Tensile Member with a Circular Hole The member shown in
Fig. 6-4 is subjected to an axial tensile load of 64 kN. The material from which
the member is constructed has the stress–strain diagram of Fig. 6-5 for static tensile
loading.

From Table 6-1, part II, case 2a, the theoretical stress concentration factor is com-
puted using d/D = 20

100 , as

Kt = 3.0 − 3.140

(
20

100

)
+ 3.667

(
20

100

)2

− 1.527

(
20

100

)3

= 2.51 (1)

The nominal stress is found using the net cross-sectional area:

σnom = P

(D − d)t
= 64

(100 − 20)8

(
103

10−6

)
= 100 MPa (2)

Based on elastic behavior, the peak stress σmax at the edge of the hole would be

σmax = Kt σnom = (2.51)(100) = 251 MPa (3)

This stress value, however, exceeds the yield point of the material. The actual peak
stress and strain at the hole edge are found by using Neuber’s rule. The nominal
strain is read from the stress–strain curve; at σnom = 100 MPa, the strain is εnom =
5 × 10−4. The point (σnom, εnom) is point A in Fig. 6-5. Neuber’s rule gives

σmax εmax = K 2
t σnomεnom = (2.51)2(100)(5 × 10−4) = 0.315 MPa (4)

The intersection of the curve σmax εmax = 0.315 with the stress–strain curve (point B
in Fig. 6-5) yields a peak stress of σmax = 243 MPa and a peak strain of 13 × 10−4.
The effective stress concentration factor is

Kσ = σmax/σnom = 243/100 = 2.43 (5)

The effective strain concentration factor is

Kε = 13 × 10−4

5 × 10−4
= 2.6 (6)

In the local strain approach to fatigue analysis, fatigue life is correlated with the
strain history of a point, and knowledge of the true level of strain at the point is
necessary. Neuber’s rule enables the estimation of local strain levels without using
complicated elastic–plastic finite-element analyses.
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(c)

(b)

(a)

Figure 6-6: Reducing the effect of the stress concentration of notches and holes: (a) Notch
shapes arranged in order of their effect on the stress concentration decreasing as you move
from left to right and top to bottom; (b) asymmetric notch shapes, arranged in the same way
as in (a); (c) holes, arranged in the same way as in (a).
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6.4 DESIGNING TO MINIMIZE STRESS CONCENTRATION

A qualitative discussion of techniques for avoiding the detrimental effects of stress
concentration is given by Leyer [6.6]. As a general rule, force should be transmitted
from point to point as smoothly as possible. The lines connecting the force transmis-
sion path are sometimes called the force (or stress) flow, although it is arguable if
force flow has a scientifically based definition. Sharp transitions in the direction of
the force flow should be removed by smoothing contours and rounding notch roots.
When stress raisers are necessitated by functional requirements, the raisers should
be placed in regions of low nominal stress if possible. Figure 6-6 depicts forms of
notches and holes in the order in which they cause stress concentration. Figure 6-7
shows how direction of stress flow affects the extent to which a notch causes stress
concentration. The configuration in Fig. 6-7b has higher stress levels because of the
sharp change in the direction of force flow.

When notches are necessary, removal of material near the notch can alleviate
stress concentration effects. Figures 6-8 to 6-13 demonstrate instances where re-
moval of material improves the strength of the member.

A type of stress concentration called an interface notch is commonly produced
when parts are joined by welding. Figure 6-14 shows examples of interface notches
and one way of mitigating the effect. The surfaces where the mating plates touch
without weld metal filling, form what is, in effect, a sharp crack that causes stress
concentration. Stress concentration also results from poor welding techniques that
create small cracks in the weld material or burn pits in the base material.

Figure 6-7: Two parts with the same shape (step in cross section) but differing stress flow
patterns can give totally different notch effects and widely differing stress levels at the corner
step: (a) stress flow is smooth; (b) sharp change in the stress flow direction causes high stress.
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(b)(a)

Figure 6-8: Guiding the lines of stress by means of notches that are not functionally essential
is a useful method of reducing the detrimental effects of notches that cannot be avoided. These
are termed relief notches. It is assumed here that the bearing surface of the step of (a) is needed
functionally. Adding a notch as in (b) can reduce the hazardous effects of the corner of (a).

Figure 6-9: Relief notch where screw thread meets cylindrical body of bolt; (a) considerable
stress concentration can occur at the step interface; (b) use of a smoother interface leads to
relief of stress concentration.
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(c)

(b)

(a)

Figure 6-10: Alleviation of stress concentration by removal of material, a process that some-
times is relatively easy to machine. (a) It is assumed that a notch of the sort shown occurs. In
both cases (b) and (c), the notch is retained and the stress concentration reduced.
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(c)

(b)

(a)

Figure 6-11: Reduce the stress concentration in the stepped shaft of (a) by including mate-
rial such as shown in (b). If this sort of modification is not possible, the undercut shoulder of
(c) can help.
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(b)

(a)

Grooves
reduce
stress
concentration
due to hole

Hole Grooves

Figure 6-12: Removal of material can reduce stress concentration, for example, in bars with
collars and holes. (a) The bar on the right with the narrowed collar will lead to reduced stress
concentration relative to the bar on the left. (b) Grooves near a hole can reduce the stress
concentration around the hole.
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Figure 6-13: Nut designs. These are most important under fatigue loading. From Ref. [6.1],
with permission. (a) Standard bolt and nut combination. The force flow near the top of the nut
is sparse, but in area D the stress flow density is very high. (b) Nut with a lip. The force flow
on the inner side of the lip is in the same direction as in the bolt and the force flow is more
evenly distributed for the whole nut than for case (a). The peak stress is relieved. (c) “Force
flow” is not reversed at all. Thus fatigue strength here is significantly higher than for the other
cases.

(b)

(a)

Figure 6-14: The typical welding joints of (a) can be improved by boring out corners as
shown in (b).
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TABLE 6-1 STRESS CONCENTRATION FACTORSa

Notation
Kt Theoretical stress concentration factor σnom Nominal normal stress defined for each

in elastic range case (F/L2)
σ Applied stress (F/L2) σmax Maximum normal stress at stress raiser (F/L2)
P Applied axial force (F) τnom Nominal shear stress defined for each
M Applied moment (F L) case (F/L2)
m1, m2, m Applied moment per unit length (F L/L) τmax Maximum shear stress at stress raiser (F/L2)
T Applied torque (F L)

Refer to figures for the geometries of the specimens.

I. Notches and Grooves

Type of Stress Raiser Loading Condition Stress Concentration Factor

1.
Elliptical or U-shaped notch
in semi-infinite plate

a. Uniaxial tension σmax = σA = Ktσ

Kt = 0.855 + 2.21
√

h/r for 1 ≤ h/r ≤ 361

b. Transverse bending Elliptical notch only, ν = 0.3 and when h/t → ∞,

σmax = σA = Ktσ, σ = 6m/t2

Kt = 0.998 + 0.790
√

h/r for 0 ≤ h/r ≤ 7
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2.
Opposite single U-shaped
notches in finite-width plate

a. Axial tension σmax = σA = Ktσnom, σnom = P/td

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.955 + 2.169
√

h/r − 0.081h/r 1.037 + 1.991
√

h/r + 0.002h/r

C2 −1.557 − 4.046
√

h/r + 1.032h/r −1.886 − 2.181
√

h/r − 0.048h/r

C3 4.013 + 0.424
√

h/r − 0.748h/r 0.649 + 1.086
√

h/r + 0.142h/r

C4 −2.461 + 1.538
√

h/r − 0.236h/r 1.218 − 0.922
√

h/r − 0.086h/r

for semicircular notch (h/r = 1.0)

Kt = 3.065 − 3.472
(

2h
D

)
+ 1.009

(
2h
D

)2 + 0.405
(

2h
D

)3

b. In-plane bending σmax = σA = Ktσnom, σnom = 6M/d2t

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 1.024 + 2.092
√

h/r − 0.051h/r 1.113 + 1.957
√

h/r

C2 −0.630 − 7.194
√

h/r + 1.288h/r −2.579 − 4.017
√

h/r − 0.013h/r

C3 2.117 + 8.574
√

h/r − 2.160h/r 4.100 + 3.922
√

h/r + 0.083h/r

C4 −1.420 − 3.494
√

h/r + 0.932h/r −1.528 − 1.893
√

h/r − 0.066h/r

for semicircular notch (h/r = 1.0)

Kt = 3.065 − 6.637
(

2h
D

)
+ 8.229

(
2h
D

)2 − 3.636
(

2h
D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

c. Transverse bending σmax = σA = Ktσnom, σnom = 6M/t2d

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r ≤ 5.0 and h/t is large

C1 1.041 + 0.839
√

h/r + 0.014 h/r

C2 −1.239 − 1.663
√

h/r + 0.118 h/r

C3 3.370 − 0.758
√

h/r + 0.434 h/r

C4 −2.162 + 1.582
√

h/r − 0.606 h/r

for semicircular notch (h/r = 1.0)

Kt = 1.894 − 2.784
(

2h
D

)
+ 3.046

(
2h
D

)2 − 1.186
(

2h
D

)3

3.
Single U-shaped notch on one
side in finite-width plate

a. Axial tension

AP P
d
2

σmax = σA = Ktσnom, σnom = P/td

Kt = C1 + C2
( h

D

)+ C3
( h

D

)2 + C4
( h

D

)3
0.5 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 20.0

C1 0.907 + 2.125
√

h/r + 0.023h/r 0.953 + 2.136
√

h/r − 0.005h/r

C2 0.710 − 11.289
√

h/r + 1.708h/r −3.255 − 6.281
√

h/r + 0.068h/r

C3 −0.672 + 18.754
√

h/r − 4.046h/r 8.203 + 6.893
√

h/r + 0.064h/r

C4 0.175 − 9.759
√

h/r + 2.365h/r −4.851 − 2.793
√

h/r − 0.128h/r

for semicircular notch (h/r = 1.0)

Kt = 3.065 − 8.871
( h

D

)+ 14.036
( h

D

)2 − 7.219
( h

D

)3
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b. In-plane bending σmax = σA = Ktσnom, σnom = 6M/td2

Kt = C1 + C2
( h

D

)+ C3
( h

D

)2 + C4
( h

D

)3
0.5 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 1.795 + 1.481h/r − 0.211(h/r)2 2.966 + 0.502h/r − 0.009(h/r)2

C2 −3.544 − 3.677h/r + 0.578(h/r)2 −6.475 − 1.126h/r + 0.019(h/r)2

C3 5.459 + 3.691h/r − 0.565(h/r)2 8.023 + 1.253h/r − 0.020(h/r)2

C4 −2.678 − 1.531h/r + 0.205(h/r)2 −3.572 − 0.634h/r + 0.010(h/r)2

for semicircular notch (h/r = 1.0)

Kt = 3.065 − 6.643
( h

D

)+ 0.205
( h

D

)2 − 4.004
( h

D

)3
4.
Multiple opposite semicircular
notches in finite-width plate

Axial tension

t

σmax = Ktσnom, σnom = P/td

Kt = C1 + C2

(
2r
L

)
+ C3

(
2r
L

)2 + C4

(
2r
L

)3

2r/D ≤ 0.4, 0 ≤ 2r/L ≤ 1.0

C1 3.1055 − 3.4287
( 2r

D

)+ 0.8522
( 2r

D

)2
C2 −1.4370 + 10.5053

( 2r
D

)− 8.7547
( 2r

D

)2 − 19.6273
(2r

D

)3
C3 −1.6753 − 14.0851

( 2r
D

)+ 43.6575
( 2r

D

)2
C4 1.7207 + 5.7974

( 2r
D

)− 27.7463
( 2r

D

)2 + 6.0444
(2r

D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

5.
Opposite single V-shaped
notches in finite-width plate

Axial tension σmax = σA = Ktσnom, σnom = P/td

For 2h/D = 0.398 and α < 90◦,
2h/D = 0.667 and α < 60◦:

Kt = Ktu

Ktu is the stress concentration factor for U-shaped notch and α
is notch angle in degrees. Otherwise,

Kt = C1 + C2
√

Ktu + C3 Ktu .

2h/D = 0.398, 90◦ ≤ α ≤ 150◦, 1.6 ≤ Ktu ≤ 3.5

C1 5.294 − 0.1225α + 0.000523α2

C2 −5.0002 + 0.1171α − 0.000434α2

C3 1.423 − 0.01197α − 0.000004α2

2h/D = 0.667, 60◦ ≤ α ≤ 150◦, 1.6 ≤ Ktu ≤ 2.8

C1 −10.01 + 0.1534α − 0.000647α2

C2 13.60 − 0.2140α + 0.000973α2

C3 −3.781 + 0.07873α − 0.000392α2
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6.
Single V-shaped notch
on one side

In-plane bending σmax = σA = Ktσnom, σnom = 6M/td2

For α ≤ 90◦,

Kt = Ktu

For 90◦ < α ≤ 150◦ and 0.5 ≤ h/r ≤ 4.0,

Kt = 1.11Ktu −
[
−0.0159 + 0.2243

(
α

150

)− 0.4293
(

α
150

)2
+ 0.3609

(
α

150

)3]
K 2

tu

Ktu is the stress concentration factor for U notch, case 3b, and α
is notch angle in degrees.

7.
U-shaped circumferential
groove in circular shaft

a. Axial tension σmax = σA = Ktσnom, σnom = 4P/πd2

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.89 + 2.208
√

h/r − 0.094h/r 1.037 + 1.967
√

h/r + 0.002h/r

C2 −0.923 − 6.678
√

h/r + 1.638h/r −2.679 − 2.980
√

h/r − 0.053h/r

C3 2.893 + 6.448
√

h/r − 2.516h/r 3.090 + 2.124
√

h/r + 0.165h/r

C4 −1.912 − 1.944
√

h/r + 0.963h/r −0.424 − 1.153
√

h/r − 0.106h/r

for semicircular groove (h/r = 1.0)

Kt = 3.004 − 5.963
(

2h
D

)
+ 6.836

(
2h
D

)2 − 2.893
(

2h
D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

b. Bending σmax = σA = Ktσnom, σnom = 32 M/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.25 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.594 + 2.958
√

h/r − 0.520h/r 0.965 + 1.926
√

h/r

C2 0.422 − 10.545
√

h/r + 2.692h/r −2.773 − 4.414
√

h/r − 0.017h/r

C3 0.501 + 14.375
√

h/r − 4.486h/r 4.785 + 4.681
√

h/r + 0.096h/r

C4 −0.613 − 6.573
√

h/r + 2.177h/r −1.995 − 2.241
√

h/r − 0.074h/r

for semicircular groove (h/r = 1.0)

Kt = 3.032 − 7.431
(

2h
D

)
+ 10.390

(
2h
D

)2 − 5.009
(

2h
D

)3

c. Torsion τmax = τA = Ktτnom, τnom = 16T/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.25 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.966 + 1.056
√

h/r − 0.022h/r 1.089 + 0.924
√

h/r + 0.018h/r

C2 −0.192 − 4.037
√

h/r + 0.674h/r −1.504 − 2.141
√

h/r − 0.047h/r

C3 0.808 + 5.321
√

h/r − 1.231h/r 2.486 + 2.289
√

h/r + 0.091h/r

C4 −0.567 − 2.364
√

h/r + 0.566h/r −1.056 − 1.104
√

h/r − 0.059h/r
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8.
Large circumferential groove
in circular shaft

a. Axial tension σmax = σA = Ktσnom, σnom = 4P/πd2

Kt = C1 + C2(r/d) + C3(r/d)2

0.3 ≤ r/d ≤ 1.0, 1.005 ≤ D/d ≤ 1.10

C1 −81.39 + 153.10(D/d) − 70.49(D/d)2

C2 119.64 − 221.81(D/d) + 101.93(D/d)2

C3 −57.88 + 107.33(D/d) − 49.34(D/d)2

b. Bending σmax = σA = Ktσnom, σnom = 32M/πd3

Kt = C1 + C2(r/d) + C3(r/d)2

0.3 ≤ r/d ≤ 1.0, 1.005 ≤ D/d < 1.10

C1 −39.58 + 73.22(D/d) − 32.46(D/d)2

C2 −9.477 + 29.41(D/d) − 20.13(D/d)2

C3 82.46 − 166.96(D/d) + 84.58(D/d)2

c. Torsion τmax = τA = Ktτnom, τnom = 16T/πd3

Kt = C1 + C2(r/d) + C3(r/d)2

0.3 ≤ r/d ≤ 1, 1.005 ≤ D/d < 1.10

C1 −35.16 + 67.57(D/d) − 31.28(D/d)2

C2 79.13 − 148.37(D/d) + 69.09(D/d)2

C3 −50.34 + 94.67(D/d) − 44.26(D/d)2
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

9.
V-shaped groove in circular shaft

Torsion τmax = τA = Ktτnom, τnom = 16T/πd3

Ktu = stress concentration factor for U-shaped groove
(α = 0), case 7c

Kt = C1 + C2
√

Ktu + C3 Ktu

C1 0.2026
√

α − 0.06620α + 0.00281α
√

α

C2 −0.2226
√

α + 0.07814α − 0.002477α
√

α

C3 1 + 0.0298
√

α − 0.01485α − 0.000151α
√

α

where α is in degrees.
For 0◦ ≤ α ≤ 90◦, Kt is independent of r/d; for

90◦ ≤ α ≤ 125◦, Kt is applicable only if r/d ≤ 0.01.
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II. Holes

Type of Stress Raiser Loading Condition Stress Concentration Factor

1.
Single circular hole
in infinite plate

a. In-plane normal stress (1) Uniaxial tension (σ2 = 0)
σmax = Ktσ1
σA = 3σ1 or Kt = 3
σB = −σ1 or Kt = −1

(2) Biaxial tension
Kt = 3 − σ2/σ1 for −1 ≤ σ2/σ1 ≤ 1
For σ2 = σ1, σA = σB = 2σ1 or Kt = 2
For σ2 = −σ1 (pure shear stress),
σA = −σB = 4σ1 or Kt = 4

b. Transverse bending σmax = Ktσ, σ = 6m/t2, ν = 0.3
(1) Simple bending (m1 = m, m2 = 0)

For 0 ≤ d/t ≤ 7.0, σmax = σA
Kt = 3.000 − 0.947

√
d/t + 0.192d/t

(2) Cylindrical bending (m1 = m, m2 = νm)
For 0 ≤ d/t ≤ 7.0, σmax = σA
Kt = 2.700 − 0.647

√
d/t + 0.129d/t

(3) Isotropic bending (m1 = m2 = m), σmax = σA
Kt = 2 (independent of d/t)

c. Twisting moment (see
preceding figure and
definitions)

σmax = Ktσ, σ = 6m/t2

m1 = m, m2 = −m, ν = 0.3
For 0 ≤ d/t ≤ 7.0,

Kt = 4.000 − 1.772
√

d/t + 0.341d/t
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

2.
Central single circular hole
in finite-width plate

a. Axial tension σmax = σA = Ktσnom, σnom = P/[t (D − d)]
Kt = 3.000 − 3.140(d/D) + 3.667(d/D)2 − 1.527(d/D)3

for 0 ≤ d/D ≤ 1

b. In-plate bending (1) At edge of hole,
σmax = σA = Ktσnom, σnom = 6Md/(D3 − d3)t

Kt = 2 (independent of d/D)

(2) At edge of plate,
σmax = σB = Ktσnom, σnom = 6M D/(D3 − d3)t

Kt = 2d/D(α = 30◦)
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c. Transverse bending σmax = σA = Ktσnom, σnom = 6m D/(D − d)t2

For 0 ≤ d/D ≤ 0.3, ν = 0.3 and 1 ≤ d/t ≤ 7

(1) Simple bending (m1 = m, m2 = 0)

Kt =
[
1.793 + 0.131

d/t + 2.052
(d/t)2 − 1.019

(d/t)3

]
×
[
1 − 1.04

( d
D

)+ 1.22
( d

D

)2]
(2) Cylindrical bending (m1 = m, m2 = νm)

Kt =
[
1.856 + 0.317

d/t + 0.942
(d/t)2 − 0.415

(d/t)3

]
×
[
1 − 1.04

( d
D

)+ 1.22
( d

D

)2]
3.
Eccentric circular hole
in finite-width plane

a. Axial tension Stress on section AB is

σnom = σ
√

1−(d/2c)2

1−d/2c
1−c/D

1−(c/d)
[
2−

√
1−(d/2c)2

]
σmax = σB = Ktσnom

Kt = 3.000 − 3.140
( d

2c

)+ 3.667
( d

2c

)2 − 1.527
( d

2c

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

b. In-plane bending σmax = max(σA, σB)

σB = KtB σnom, σnom = 6M/D2t

KtB = C1 + C2
c
e + C3

( c
e

)2
0 ≤ d/2c ≤ 0.5, 0 ≤ c/e ≤ 1.0

C1 3.000 − 0.631(d/2c) + 4.007(d/2c)2

C2 −5.083 + 4.067(d/2c) − 2.795(d/2c)2

C3 2.114 − 1.682(d/2c) − 0.273(d/2c)2

σA = KtAσnom, σnom = 6M/D2t

KtA = C ′
1 + C ′

2
c
e + C ′

3

( c
e

)2
C ′

1 1.0286 − 0.1638(d/2c) + 2.702(d/2c)2

C ′
2 −0.05863 − 0.1335(d/2c) − 1.8747(d/2c)2

C ′
3 0.18883 − 0.89219(d/2c) + 1.5189(d/2c)2

4.
Two equal circular holes
in infinite plate

a. Uniaxial tension parallel
to row of holes
(σ1 = σ, σ2 = 0)

σmax = Ktσ for 0 ≤ d/L ≤ 1

Kt = 3.000 − 0.712
( d

L

)+ 0.271
( d

L

)2
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b. Uniaxial tension normal
to row of holes
(σ2 = σ, σ1 = 0)

σmax = σB = Ktσnom, σnom = σ
√

1−(d/L)2

1−d/L

Kt = 3.0000 − 3.0018
( d

L

)+ 1.0099
( d

L

)2
for 0 ≤ d/L ≤ 1

c. Biaxial tension
(σ1 = σ2 = σ )

σmax = σB = Ktσnom, σnom = σ
√

1−(d/L)2

1−d/L

Kt = 2.000 − 2.119
( d

L

)+ 2.493
( d

L

)2 − 1.372
( d

L

)3
for 0 ≤ d/L ≤ 1
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

5.
Single row of circular holes in
infinite plate

a. Uniaxial tension normal to
row of holes
(σ1 = 0, σ2 = σ )

σmax = σB = Ktσ

Kt = 3.0000 − 0.9916
( d

L

)− 2.5899
( d

L

)2 + 2.2613
( d

L

)3
for 0 ≤ d/L ≤ 1

b. Uniaxial tension parallel to
row of holes
(σ1 = σ, σ2 = 0)

σmax = σA = Ktσnom, σnom = σ/(1 − d/L)

Kt = 3.000 − 3.095
( d

L

)+ 0.309
( d

L

)2 + 0.786
( d

L

)3
for 0 ≤ d/L ≤ 1

c. Biaxial tension
(σ1 = σ2 = σ )

σmax = σA = Ktσnom, σnom = σ/(1 − d/L)

Kt = 2.000 − 1.597
( d

L

)+ 0.934
( d

L

)2 − 0.337
( d

L

)3
for 0 ≤ d/L ≤ 1
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d. Transverse bending
(ν = 0.3)

Bending about y axis:
σmax = Ktσnom, σnom = 6m/t2 for 0 ≤ d/L ≤ 1

(1) Simple bending (m1 = m, m2 = 0)

Kt = 1.787 − 0.060
( d

L

)− 0.785
( d

L

)2 + 0.217
( d

L

)3
(2) Cylindrical bending (m1 = m, m2 = νm)

Kt = 1.850 − 0.030
( d

L

)− 0.994
( d

L

)2 + 0.389
( d

L

)3
Bending about x axis:

σmax = Ktσnom, σnom = 6m/t2(1 − d/L)

for 0 ≤ d/L ≤ 1

(1) Simple bending (m1 = m, m2 = 0)

Kt = 1.788 − 1.729
( d

L

)+ 1.094
( d

L

)2 − 0.111
( d

L

)3
(2) Cylindrical bending (m1 = m, m2 = νm)

Kt = 1.849 − 1.741
( d

L

)+ 0.875
( d

L

)2 + 0.081
( d

L

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

6.
Single elliptical hole in
infinite plate

a. In-plane normal stress (1) Uniaxial tension (σ1 = σ, σ2 = 0):
σA = Ktσ

Kt = 1 + 2a
b = 1 + 2

√
a
r for 0 < a/b < 10

and σB = −σ

(2) Biaxial tension:
For −1 ≤ σ2/σ1 ≤ 1 and 0.25 ≤ a/b ≤ 4,

σA = Kt Aσ1, Kt A = 1 + 2a
b − σ2

σ1

σB = Kt Bσ1, Kt B = σ2
σ1

(
1 + 2b

a

)
− 1

For σ1 = σ2,

Kt A = 2a/b, Kt B = 2b/a

b. Transverse bending σmax = Ktσ, σ = 6m/t2, ν = 0.3
for 2a/t > 5 and 0.2 ≤ a/b < 5

(1) Simple bending (m1 = m, m2 = 0)

Kt = 1 + 2(1+ν)(a/b)
3+ν

for 2a/t > 5

(2) Cylindrical bending (m1 = m, m2 = νm)

Kt = (1+ν)[2(a/b)+3−ν]
3+ν

(3) Isotropic bending (m1 = m2 = m)
Kt = 2 (constant)
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7.
Single elliptical hole in
finite-width plate

a. Axial tension σmax = σA = Ktσnom, σnom = σ/(1 − 2a/D)

Kt = C1 + C2
2a
D + C3

(
2a
D

)2 + C4

(
2a
D

)3
,

1.0 ≤ a/b ≤ 8.0

C1 1.109 − 0.188
√

a/b + 2.086a/b

C2 −0.486 + 0.213
√

a/b − 2.588a/b

C3 3.816 − 5.510
√

a/b + 4.638a/b

C4 −2.438 + 5.485
√

a/b − 4.126a/b

b. In-plane bending σmax = σA = Ktσnom, σnom = 12Ma/(D3 − 8a3)t

Kt = C1 + C2

(
2a
D

)
+ C3

(
2a
D

)2

0.4 ≤ 2a/D ≤ 1.0, 1.0 ≤ a/b ≤ 2.0

C1 1.509 + 0.336(a/b) + 0.155(a/b)2

C2 −0.416 + 0.445(a/b) − 0.029(a/b)2

C3 0.878 − 0.736(a/b) − 0.142(a/b)2

for 2a/D ≤ 0.4, σmax = σB = 6M/D2t
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

8.
Eccentric elliptical hole in
finite-width plate

Axial tension Stress on section AB is

σnom =
√

1−a/c
1−a/c

1−c/D

1−(c/D)
[

2−
√

1−(a/c)2
]

and

σmax = Ktσnom

Kt = C1 + C2
a
c + C3

( a
c

)2 + C4
( a

c

)3
for 1.0 ≤ a/b ≤ 8.0 and 0 ≤ a/c ≤ 1
Expressions for C1, C2, C3, and C4 from case 7a can be used.

9.
Infinite row of elliptical holes
in infinite-width plate

Uniaxial tension σmax = Ktσnom, σnom = σ/(1 − 2a/L)

For 0 ≤ 2a/L ≤ 0.7 and 1 ≤ a/b ≤ 10,

Kt =
[
1.002 − 1.016

(
2a
L

)
+ 0.253

(
2a
L

)2 ] (
1 + 2a

b

)
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10.
Circular hole with opposite
semicircular lobes in
finite-width plate

Axial tension σmax = Ktσnom, σnom = σ/(1 − 2b/D)

For 0 ≤ 2b/D ≤ 1,

Kt = Kt0

[
1 − 2b

D +
(

6
Kt0

− 1
) ( b

D

)2 +
(

1 − 4
Kt0

) ( b
D

)3 ]
where for 0.2 < r/R ≤ 4.0,

Kt0 = σmax
σ

= 2.2889 + 1.6355√
r/R

− 0.0157
r/R

For infinitely wide plate, Kt = Kt0.

11.
Rectangular hole with rounded
corners in infinite-width plate

Uniaxial tension σmax = Ktσ

Kt = C1 + C2
a
b + C3

( a
b

)2 + C4
(a

b

)3
0.05 ≤ r/2a ≤ 0.5, 0.2 ≤ a/b ≤ 1.0

C1 14.815 − 22.308
√

r/2a + 16.298(r/2a)

C2 −11.201 − 13.789
√

r/2a + 19.200(r/2a)

C3 0.2020 + 54.620
√

r/2a − 54.748(r/2a)

C4 3.232 − 32.530
√

r/2a + 30.964(r/2a)
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

12.
Slot having semicircular ends

a. Axial tension aeq = √
rb

where aeq is width of
equivalent ellipse

If the openings such as two holes connected by a slit or an
ovaloid are enveloped by an ellipse with the same 2b and r ,
Kt can be approximated by using an equivalent ellipse having
the same dimensions 2b and r . See cases 6a and 8.

b. In-plane bending
aeq = √

rb
Use an equivalent ellipse. See case 6b.

13.
Equilateral triangular hole with
round corners in infinite-width
plate

a. Uniaxial tension σmax = Ktσ
(σ1 = σ, σ2 = 0) For 0.25 ≤ r/R ≤ 0.75

Kt = 6.191 − 7.215(r/R) + 5.492(r/R)2

b. Biaxial tension σmax = Ktσ
(σ1 = σ, σ2 = σ/2) For 0.25 ≤ r/R ≤ 0.75

Kt = 6.364 − 8.885(r/R) + 6.494(r/R)2

c. Biaxial tension σmax = Ktσ
(σ1 = σ2 = σ ) For 0.25 ≤ r/R ≤ 0.75

Kt = 7.067 − 11.099(r/R) + 7.394(r/R)2
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14.
Single symmetrically reinforced
circular hole in finite-width
plate in tension

a. Without fillet (r = 0) σmax = σA = Ktσ

where σmax = maximum mean stress for thickness sliced off to
plate thickness t . For b/t = 5.0,

Kt = C1 + C2

(
1

h/t

)
+ C3

(
1

h/t

)2

D/b ≥ 4.0, 1 ≤ h/t ≤ 5 and 0.3 ≤ a/b ≤ 0

C1 1.869 + 1.196(a/b) − 0.393(a/b)2

C2 −3.042 + 6.476(a/b) − 4.871(a/b)2

C3 4.036 − 7.229(a/b) + 5.180(a/b)2

b. With fillet (r �= 0) For r/t ≥ 0.6, 0.3 ≤ a/b ≤ 0.7, and h/t ≥ 3.0,

Kt = 3.000 − 2.206
√

R + 0.948R − 0.142R
√

R

where R = cross-sectional area of added reinforcement

cross-sectional area of hole (without added reinforcement)

R = ( b
a − 1

) ( h
t − 1

)+ (4 − π) r2
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

15.
Transverse circular hole in
round bar or tube

a. Axial tension σmax = σA = Ktσnom

where σnom = 4P
π(D2−d2)

Kt = C1 + C2
2r
D + C3

(
2r
D

)2

d/D ≤ 0.9, 2r/D ≤ 0.45

C1 3.000

C2 0.427 − 6.770(d/D) + 22.698(d/D)2 − 16.670(d/D)3

C3 11.357 + 15.665(d/D) − 60.929(d/D)2 + 41.501(d/D)3

b. Bending σmax = σA = Ktσnom

where σnom = 32M D
π(D4−d4)

Kt = C1 + C2
2r
D + C3

(
2r
D

)2 + C4

(
2r
D

)3

d/D ≤ 0.9, 2r/D ≤ 0.4

C1 3.000
C2 −6.250 − 0.585(d/D) + 3.115(d/D)2

C3 41.000 − 1.071(d/D) − 6.746(d/D)2

C4 −45.000 + 1.389(d/D) + 13.889(d/D)2
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c. Torsion σmax = σA = Ktτnom, τnom = 16T D/π(D4 − d4)

Kt = C1 + C2
2r
D + C3

(
2r
D

)2 + C4

(
2r
D

)3

2r/d ≤ 0.4, d/D ≤ 0.8

C1 4.000

C2 −6.055 + 3.184(d/D) − 3.461(d/D)2

C3 32.764 − 30.121(d/D) + 39.887(d/D)2

C4 −38.330 + 51.542
√

d/D − 27.483(d/D)

Maximum stress occurs inside hole on hole surface, near outer
surface of bar
Maximum shear stress concentration factor

Kt S = τmax/τnom = 1
2 Kt

16.
Round pin joint with closely
fitting pin in finite-width plate

Tension Nominal stress based on net section:
σmax = Ktaσna, σna = P/(D − d)h

Nominal stress based on bearing area:
σmax = Ktbσnb, σnb = P/dh

For 0.15 ≤ d/D ≤ 0.75, L/D ≥ 1.0,

Kta = 12.882 − 52.714
( d

D

)+ 89.762
( d

D

)2 − 51.667
( d

D

)3
Ktb = 0.2880 + 8.820

( d
D

)− 23.196
( d

D

)2 + 29.167
( d

D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Fillets

III. Fillets

Type of Stress Raiser Loading Conditions Stress Concentration Factor

1.
Opposite shoulder fillets in
stepped flat bar

a. Axial tension σmax = Ktσnom, σnom = P/td

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

where L
D > −1.89

( r
d − 0.15

)+ 5.5

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 1.006 + 1.008
√

h/r − 0.044h/r 1.020 + 1.009
√

h/r − 0.048h/r

C2 −0.115 − 0.584
√

h/r + 0.315h/r −0.065 − 0.165
√

h/r − 0.007h/r

C3 0.245 − 1.006
√

h/r − 0.257h/r −3.459 + 1.266
√

h/r − 0.016h/r

C4 −0.135 + 0.582
√

h/r − 0.017h/r 3.505 − 2.109
√

h/r + 0.069h/r

For cases where L/D < −1.89(r/d − 0.15) + 5.5, see Ref. [6.1].

b. In-plane bending σmax = Ktσnom, σnom = 6M/td2

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

where L
D > −2.05

( r
d − 0.025

)+ 2.0

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 1.006 + 0.967
√

h/r + 0.013h/r 1.058 + 1.002
√

h/r − 0.038h/r

C2 −0.270 − 2.372
√

h/r + 0.708h/r −3.652 + 1.639
√

h/r − 0.436h/r

C3 0.662 + 1.157
√

h/r − 0.908h/r 6.170 − 5.687
√

h/r + 1.175h/r

C4 −0.405 + 0.249
√

h/r − 0.200h/r −2.558 + 3.046
√

h/r − 0.701h/r
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2.
Shoulder fillet in stepped
circular shaft

a. Axial tension σmax = Ktσnom, σnom = 4P/πd2

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 0.926 + 1.157
√

h/r − 0.099h/r 1.200 + 0.860
√

h/r − 0.022h/r

C2 0.012 − 3.036
√

h/r + 0.961h/r −1.805 − 0.346
√

h/r − 0.038h/r

C3 −0.302 + 3.977
√

h/r − 1.744h/r 2.198 − 0.486
√

h/r + 0.165h/r

C4 0.365 − 2.098
√

h/r + 0.878h/r −0.593 − 0.028
√

h/r − 0.106h/r

b. Bending σmax = Ktσnom, σnom = 32M/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 0.947 + 1.206
√

h/r − 0.131h/r 1.232 + 0.832
√

h/r − 0.008h/r

C2 0.022 − 3.405
√

h/r + 0.915h/r −3.813 + 0.968
√

h/r − 0.260h/r

C3 0.869 + 1.777
√

h/r − 0.555h/r 7.423 − 4.868
√

h/r + 0.869h/r

C4 −0.810 + 0.422
√

h/r − 0.260h/r −3.839 + 3.070
√

h/r − 0.600h/r

TA
B

L
E

6-1
S

tress
C

o
n

cen
tratio

n
Facto

rs
299



TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Fillets

c. Torsion τmax = Ktτnom, τnom = 16T/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.25 ≤ h/r ≤ 4.0

C1 0.905 + 0.783
√

h/r − 0.075h/r

C2 −0.437 − 1.969
√

h/r + 0.553h/r

C3 1.557 + 1.073
√

h/r − 0.578h/r

C4 −1.061 + 0.171
√

h/r + 0.086h/r

300
TA

B
L

E
6-1

S
tress

C
o

n
cen

tratio
n

Facto
rs



IV. Miscellaneous Elements

Type of Stress Raiser Loading Conditions Stress Concentration Factor

1.
Round shaft with semicircular
end key seat

a. Bending σmax = Ktσ, σ = 32M/π D3

b = 1
4 D, h = 1

8 D, α = 10◦, β = 15◦

(1) At location A on surface:
Kt A = 1.6

(2) At location B at end of keyway:

Kt B = 1.426 + 0.1643
(

0.1
r/D

)
− 0.0019

(
0.1

r/D

)2

where 0.005 ≤ r/D ≤ 0.04
D ≤ 6.5 in.
h/D = 0.125

For D > 6.5 in., it is suggested that the Kt B values for
r/D = 0.0208 be used.

b. Torsion h = 1
8 D, b = D/r, α = 15◦, β = 50◦

(1) At location A on surface:
Kt A = σmax/τ � 3.4, τ = 16T/π D3

(2) At location B in fillet:
Kt B = σmax/τ

= 1.953 + 0.1434
(

0.1
r/D

)
− 0.0021

(
0.1

r/D

)2

for 0.005 ≤ r/D ≤ 0.07
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Miscellaneous Elements

2.
Splined shaft

a. Torsion For an eight-tooth spline

Kt S = τmax/τ, τ = 16T/π D3

For 0.01 ≤ r/D ≤ 0.04

Kt S = 6.083 − 14.775
(

10r
D

)
+ 18.250

(
10r
D

)2

3.
Gear teeth

Bending plus some
compression

A and C are points of
tangency of inscribed parabola
ABC with tooth profile

b = tooth width normal to
plane of figure

r f = minimum radius of tooth
fillet

W = load per unit length of
tooth face

φ = angle between load W
and normal to tooth face

Maximum stress occurs at fillet on tension side at base of tooth

σmax = Ktσnom, σnom = 6W h
bt2 − W

bt tan φ

For 14.5◦ pressure angle,

Kt = 0.22 +
(

t
r f

)0.2 ( t
h

)0.4

For 20◦ pressure angle,

Kt = 0.18 +
(

t
r f

)0.15 ( t
h

)0.45
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4.
U-shaped member

where θ = 20◦
e = L + r + d/2

For position A,

Kt A = σmax−P/td
6Pe/td2

For position B,

Kt B = σmax
P LcB/IB

where IB/cB = section modulus at section in question (section B B ′)

(1) For square outer corners

e
r = e

h = e
d Kt A = 0.194 + 1.267

( e
r

)− 0.455
( e

r

)2 + 0.050
( e

r

)3
1.5 ≤ e

r ≤ 4.5 Kt B = 4.141 − 2.760
( e

r

)+ 0.838
( e

r

)2 − 0.082
( e

r

)3
e

2r = e
2h = e

d Kt A = 0.800 + 1.147
( e

2r

)− 0.580
( e

2r

)2 + 0.093
( e

2r

)3
1.0 ≤ e

2r ≤ 2.5 Kt B = 7.890 − 11.107
( e

2r

)+ 6.020
( e

2r

)2 − 1.053
( e

2r

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Miscellaneous Elements

d
r = d

h When a = 3r ,

0.75 ≤ d
r ≤ 2.0

Kt A = 1.143 + 0.074
( d

r

)+ 0.026
( d

r

)3
Kt B = 1.276

When a = r ,

Kt A = 0.714 + 1.237
( d

r

)− 0.891
( d

r

)2 + 0.239
( d

r

)3
Kt B = 1.374

d
r = h

r For a = 3r ,

1.0 ≤ d
r ≤ 7.0

Kt A = 0.982 + 0.303
( d

r

)− 0.017
( d

r

)2
Kt B = 1.020 + 0.235

( d
r

)− 0.015
( d

r

)2
For a = r ,

Kt A = 1.010 + 0.281
( d

r

)− 0.012
( d

r

)2
Kt B = 0.200 + 1.374

( d
r

)− 0.412
( d

r

)2 + 0.037
( d

r

)3
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(2) For rounded outer corners

R
r = R

d = R
h For a = 3r ,

2.0 ≤ R
r ≤ 2.75

Kt A = 48.959 − 60.004
( R

r

)+ 24.933
( R

r

)2 − 3.427
( R

r

)3
Kt B = 79.769 − 98.346

( R
r

)+ 40.806
( R

r

)2 − 5.610
( R

r

)3
For a = r ,

Kt A = 27.714 − 31.859
( R

r

)+ 12.625
( R

r

)2 − 1.648
( R

r

)3
Kt B = 81.344 − 99.133

( R
r

)+ 40.740
( R

r

)2 − 5.560
( R

r

)3
5.
Angles and box sections

Torsion (1) For angle section:

τmax = τA = Ktτ

Kt = 6.554 − 16.077
√

r
t + 16.987

( r
t

)− 5.886
√

r
t

( r
t

)
where 0.1 ≤ r/t ≤ 1.4

(2) For box section:

τmax = τB = Ktτ

Kt = 3.962 − 7.359
( r

t

)+ 6.801
( r

t

)2 − 2.153
( r

t

)3
where a is 15–20 times larger than t ,
0.2 ≤ r/t ≤ 1.4

aMuch of this material is based on Ref. [6.1].
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