CHAPTER

Stress Concentration

6.1	Notation	255
6.2	Stress Concentration Factors	256
6.3	Effective Stress Concentration Factors	259
	Neuber's Rule	261
6.4	Designing to Minimize Stress Concentration	265
	References	271
	Tables	273

Mathematical analysis and experimental measurement show that in a loaded structural member, near changes in the section, distributions of stress occur in which the peak stress reaches much larger magnitudes than does the average stress over the section. This increase in peak stress near holes, grooves, notches, sharp corners, cracks, and other changes in section is called *stress concentration*. The section variation that causes the stress concentration is referred to as a *stress raiser*. Although an extensive collection of stress concentration factors is tabulated in this chapter, a much larger collection is provided in Ref. [6.1].

6.1 NOTATION

The units for some of the definitions are given in parentheses, using L for length and F for force.

- K_{ε} Effective strain concentration factor
- K_f Effective stress concentration factor for cyclic loading, fatigue notch factor
- K_i Effective stress concentration factor for impact loads
- K_{σ} Effective stress concentration factor
- K_t Theoretical stress concentration factor in elastic range, $= \sigma_{\text{max}} / \sigma_{\text{nom}}$
- q Notch sensitivity index
- q_f Notch sensitivity index for cyclic loading
- q_i Notch sensitivity index for impact loading
- r Notch radius (L)

 ε_{nom} Nominal strain (L/L)

 $\sigma_{\rm nom}$ Nominal stress (F/L^2) of notched member; for example, for an extension member, $\sigma_{\rm nom}$ is usually taken to be the axial load divided by the cross-sectional area measured at the notch (i.e., area taken remotely from notch minus area corresponding to notch). In practice, the definition of the reference stress $\sigma_{\rm nom}$ depends on the problem at hand. In Table 6-1 the reference stress is defined for each particular stress concentration factor.

6.2 STRESS CONCENTRATION FACTORS

Figure 6-1 shows a large plate that contains a small circular hole. For an applied uniaxial tension the stress field is found from linear elasticity theory [6.2]. In polar coordinates the azimuthal component of stress at point P is given as

$$\sigma_{\theta} = \frac{1}{2}\sigma \left[1 + (r^2/\rho^2) \right] - \frac{1}{2}\sigma \left[1 + 3(r^4/\rho^4) \right] \cos 2\theta$$
(6.1)

The maximum stress occurs at the sides of the hole where $\rho = r$ and $\theta = \frac{1}{2}\pi$ or $\theta = \frac{3}{2}\pi$. At the hole sides,

$$\sigma_{\theta} = 3\sigma$$

The peak stress is three times the uniform stress σ .

To account for the peak in stress near a stress raiser, the *stress concentration factor* or *theoretical stress concentration factor* is defined as the ratio of the calculated peak stress to the nominal stress that would exist in the member if the distribution of stress

Figure 6-1: Infinite plate with a small circular hole.

remained uniform; that is,

$$K_t = \frac{\sigma_{\text{max}}}{\sigma_{\text{nom}}} \tag{6.2}$$

The nominal stress is found using basic strength-of-materials formulas, and the calculations can be based on the properties of the net cross section at the stress raiser. Sometimes the overall section is used in computing the nominal stress.

If σ is chosen as the nominal stress for the case shown in Fig. 6-1, the stress concentration factor is

$$K_t = \sigma_{\rm max} / \sigma_{\rm nom} = 3$$

The effect of the stress raiser is to change only the distribution of stress. Equilibrium requirements dictate that the average stress on the section be the same in the case of stress concentration as it would be if there were a uniform stress distribution. Stress concentration results not only in unusually high stresses near the stress raiser but also in unusually low stresses in the remainder of the section.

When more than one load acts on a notched member (e.g., combined tension, torsion, and bending) the nominal stress due to each load is multiplied by the stress concentration factor corresponding to each load, and the resultant stresses are found by superposition. However, when bending and axial loads act simultaneously, superposition can be applied only when bending moments due to the interaction of axial force and bending deflections are negligible compared to bending moments due to applied loads.

The stress concentration factors for a variety of member configurations and load types are shown in Table 6-1. A general discussion of stress concentration factors and factor values for many special cases are contained in the literature (e.g., [6.1]).

Example 6.1 Circular Shaft with a Groove The circular shaft shown in Fig. 6-2 is girdled by a U-shaped groove, with h = 10.5 mm deep. The radius of the groove root r = 7 mm, and the bar diameter away from the notch D = 70 mm. A bend-

Figure 6-2: Circular shaft with a U-groove.

ing moment of 1.0 kN·m and a twisting moment of 2.5 kN·m act on the bar. The maximum shear stress at the root of the notch is to be calculated.

The stress concentration factor for bending is found from part I in Table 6-1, case 7b. Substitute

$$2h/D = \frac{21}{70} = 0.3, \qquad h/r = 10.5/7 = 1.5$$
 (1)

into the expression given for K_t :

$$K_t = C_1 + C_2(2h/D) + C_3(2h/D)^2 + C_4(2h/D)^3$$
(2)

Since $0.25 \le h/r = 1.5 < 2.0$, we find, for elastic bending,

$$C_1 = 0.594 + 2.958\sqrt{h/r} - 0.520h/r$$

with C_2 , C_3 , and C_4 given by analogous formulas in case I-7b of Table 6-1. These constants are computed as

$$C_1 = 3.44, \qquad C_2 = -8.45, \qquad C_3 = 11.38, \qquad C_4 = -5.40$$

It follows that for elastic bending

$$K_t = 3.44 - 8.45(0.3) + 11.38(0.3)^2 - 5.40(0.3)^3 = 1.78$$
 (3)

The tensile bending stress σ_{nom} is obtained from Eq. (3.56a) as Md/2I and at the notch root the stress is

$$\sigma = K_t \frac{Md}{2I} = \frac{(1.78)(1.0 \times 10^3 \text{ N-m})(0.049 \text{ m})(64)}{2\pi (0.049)^4 \text{ m}^4} = 154.1 \text{ MPa}$$
(4)

The formulas from Table 6-1, part I, case 7c, for the elastic torsional load give $K_t = 1.41$. The nominal twisting stress at the base of the groove is [Eq. (3.48)]

$$\tau = \frac{K_t T d/2}{J} = \frac{K_t T d(32)}{2\pi d^4} = \frac{(1.41)(2.5 \times 10^3 \text{ N} \cdot \text{m})16}{\pi (0.049)^3} = 152.6 \text{ MPa}$$
(5)

The maximum shear stress at the base of the groove is one-half the difference of the maximum and minimum principal stresses (Chapter 3). The maximum principal stress is

$$\sigma_{\max} = \frac{1}{2}\sigma + \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2} = \frac{1}{2}(154.1) + \frac{1}{2}\sqrt{154.1^2 + 4(152.6)^2} = 248.0 \text{ MPa}$$

and the minimum principal stress is

$$\sigma_{\min} = \frac{1}{2}\sigma - \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2} = \frac{1}{2}(154.1) - \frac{1}{2}\sqrt{154.1^2 + 4(152.6)^2} = -93.9 \text{ MPa}$$

Thus, the maximum shear stress is

$$\tau_{\rm max} = \frac{1}{2}(\sigma_{\rm max} - \sigma_{\rm min}) = \frac{1}{2}(248.0 + 93.9) = 171.0 \,\mathrm{MPa}$$
 (6)

6.3 EFFECTIVE STRESS CONCENTRATION FACTORS

In theory, the peak stress near a stress raiser would be K_t times larger than the nominal stress at the notched cross section. However, K_t is an ideal value based on linear elastic behavior and depends only on the proportions of the dimensions of the stress raiser and the notched part. For example, in case 2a, part I, Table 6-1, if h, D, and r were all multiplied by a common factor n > 0, the value of K_t would remain the same. In practice, a number of phenomena may act to mitigate the effects of stress concentration. Local plastic deformation, residual stress, notch radius, part size, temperature, material characteristics (e.g., grain size, work-hardening behavior), and load type (static, cyclic, or impact) may influence the extent to which the peak notch stress approaches the theoretical value of $K_t \sigma_{nom}$.

To deal with the various phenomena that influence stress concentration, the concepts of *effective stress concentration factor* and *notch sensitivity* have been introduced. The effective stress concentration factor is obtained experimentally.

The effective stress concentration factor of a specimen is defined to be the ratio of the stress calculated for the load at which structural damage is initiated in the specimen free of the stress raiser to the nominal stress corresponding to the load at which damage starts in the sample with the stress raiser. It is assumed that damage in the actual structure occurs when the maximum stress attains the same value in both cases. Similar to Eq. (6.2):

$$K_{\sigma} = \sigma_{\rm max} / \sigma_{\rm nom} \tag{6.3}$$

The factor K_{σ} is now the effective stress concentration factor as determined by the experimental study of the specimen. See Ref. [6.1] for a more detailed discussion of K_{σ} .

For fatigue loading, the definition of experimentally determined effective stress concentration is

$$K_f = \frac{\text{fatigue strength without notch}}{\text{fatigue strength with notch}}$$
(6.4)

Factors determined by Eq. (6.4) should be regarded more as strength reduction factors than as quantities that correspond to an actual stress in the body. The fatigue strength (limit) is the maximum amplitude of fully reversed cyclic stress that a specimen can withstand for a given number of load cycles. For static conditions the stress at rupture is computed using strength-of-materials elastic formulas even though yielding may occur before rupture. If the tests are under bending or torsion loads, extreme fiber stress is used in the definition of K_{σ} and the stresses are computed using the formulas $\sigma = Mc/I$ and $\tau = Tr/J$ (Chapter 3).

No suitable experimental definition of the effective stress concentration factor in impact exists. Impact tests such as the *Charpy* or *Izod tests* (Chapter 4) measure the energy absorbed during the rupture of a notched specimen and do not yield information on stress levels.

When experimental information for a given member or load condition does not exist, the *notch sensitivity index q* provides a means of estimating the effects of stress concentration on strength. Effective stress concentration factors, which are less than the theoretical factor, are related to K_t by the equations

$$K_{\sigma} = 1 + q(K_t - 1) \tag{6.5}$$

$$K_f = 1 + q_f(K_t - 1) \tag{6.6}$$

A similar equation could be shown for impact loads using q_i as the notch sensitivity index. Often an explicit expression for the notch sensitivity index is given [e.g., $q_f = (K_f - 1)/(K_t - 1)$]. The notch sensitivity index can vary from 0 for complete insensitivity to notches to 1 for the full theoretical effect. Typical values of q are shown in Fig. 6-3.

Notch sensitivity in fatigue decreases as the notch radius decreases and as the grain size increases. A larger part will generally have greater notch sensitivity than a smaller part with proportionally similar dimensions. This variation is known as the *scale effect*. Larger notch radii result in lower stress gradients near the notch, and more material is subjected to higher stresses. Notch sensitivity in fatigue is therefore

Figure 6-3: Fatigue notch sensitivity index.

increased. Because of the low sensitivity of small notch radii, the extremely high theoretical stress concentration factors predicted for very sharp notches and scratches are not actually realized. The notch sensitivity of quenched and tempered steels is higher than that of lower-strength, coarser-grained alloys. As a consequence, for notched members the strength advantage of high-grade steels over other materials may be lost.

Under static loading, notch sensitivity values are recommended [6.3] as q = 0 for ductile materials and q between 0.15 and 0.25 for hard, brittle metals. The notch insensitivity of ductile materials is caused by local plastic deformation at the notch tip. Under conditions that inhibit plastic slip, the notch sensitivity of a ductile metal may increase. Very low temperatures and high temperatures that cause viscous creep are two service conditions that may increase the notch sensitivity of some ductile metals. The notch sensitivity of cast iron is low for static loads ($q \approx 0$) because of the presence of internal stress raisers in the form of material inhomogeneities. These internal stress raisers weaken the material to such an extent that external notches have limited additional effect.

When a notched structural member is subjected to impact loads, the notch sensitivity may increase because the short duration of the load application does not permit the mitigating process of local slip to occur. Also, the small sections at stress raisers decrease the capacity of a member to absorb impact energy. For impact loads, values of notch sensitivity are recommended such as [6.3] q_i between 0.4 and 0.6 for ductile metals, $q_i = 1$ for hard, brittle materials, and $q_i = 0.5$ for cast irons. Reference [6.1] recommends using the full theoretical factor for brittle metals (including cast irons) for both static and impact loads because of the possibility of accidental shock loads being applied to a member during handling. The utilization of fracture mechanics to predict the brittle fracture of a flawed member under static, impact, and cyclic loads is treated in Chapter 7.

Neuber's Rule

Consider the stretched plate of Fig. 6-4. For nonlinear material behavior (Fig. 6-5), where local plastic deformation can occur near the hole, the previous stress concentration formulas may not apply. Neuber [6.4] established a rule that is useful beyond the elastic limit relating the effective stress and strain concentration factors to the theoretical stress concentration factor. Neuber's rule contends that the formula

$$K_{\sigma} K_{\varepsilon} = K_t^2 \tag{6.7}$$

applies to the three factors. This relation states that K_t is the geometric mean of K_{σ} and K_{ε} [i.e., $K_t = (K_{\sigma} K_{\varepsilon})^{1/2}$]. Often, for fatigue, K_f replaces K_t . From the definition of effective stress concentration, $K_{\sigma} = \sigma_{\max}/\sigma_{nom}$. Also, $K_{\varepsilon} = \varepsilon_{\max}/\varepsilon_{nom}$ defines the effective strain concentration factor, where ε_{\max} is the strain obtained from the material law (perhaps nonlinear) for the stress level σ_{\max} . Using these relations in Eq. (6.7) yields

$$\sigma_{\max} \,\varepsilon_{\max} = K_t^2 \sigma_{\max} \,\varepsilon_{nom} \tag{6.8}$$

Figure 6-4: Tensile member with a hole.

Usually, K_t and σ_{nom} are known, and ε_{nom} can be found from the stress–strain curve for the material. Equation (6.8) therefore becomes

$$\sigma_{\max} \varepsilon_{\max} = C \tag{6.9}$$

where *C* is a known constant. Solving Eq. (6.9) simultaneously with the stress–strain relation, the values of maximum stress and strain are found, and the true (effective) stress concentration factor K_{σ} can then be determined. In this procedure the appropriate stress–strain curve must be known.

Neuber's rule was derived specifically for sharp notches in prismatic bars subjected to two-dimensional shear, but the rule has been applied as a useful approxima-

Figure 6-5: Stress-strain diagram for material of the tensile member of Fig. 6-4.

tion in other cases, especially those in which plane stress conditions exist. The rule has been shown to give poor results for circumferential grooves in shafts under axial tension [6.5].

Example 6.2 Tensile Member with a Circular Hole The member shown in Fig. 6-4 is subjected to an axial tensile load of 64 kN. The material from which the member is constructed has the stress–strain diagram of Fig. 6-5 for static tensile loading.

From Table 6-1, part II, case 2a, the theoretical stress concentration factor is computed using $d/D = \frac{20}{100}$, as

$$K_t = 3.0 - 3.140 \left(\frac{20}{100}\right) + 3.667 \left(\frac{20}{100}\right)^2 - 1.527 \left(\frac{20}{100}\right)^3 = 2.51$$
(1)

The nominal stress is found using the net cross-sectional area:

$$\sigma_{\rm nom} = \frac{P}{(D-d)t} = \frac{64}{(100-20)8} \left(\frac{10^3}{10^{-6}}\right) = 100 \,\text{MPa}$$
 (2)

Based on elastic behavior, the peak stress σ_{max} at the edge of the hole would be

$$\sigma_{\max} = K_t \,\sigma_{\text{nom}} = (2.51)(100) = 251 \text{ MPa}$$
(3)

This stress value, however, exceeds the yield point of the material. The actual peak stress and strain at the hole edge are found by using Neuber's rule. The nominal strain is read from the stress–strain curve; at $\sigma_{nom} = 100$ MPa, the strain is $\varepsilon_{nom} = 5 \times 10^{-4}$. The point (σ_{nom} , ε_{nom}) is point A in Fig. 6-5. Neuber's rule gives

$$\sigma_{\max} \varepsilon_{\max} = K_t^2 \sigma_{\text{nom}} \varepsilon_{\text{nom}} = (2.51)^2 (100) (5 \times 10^{-4}) = 0.315 \text{ MPa}$$
 (4)

The intersection of the curve $\sigma_{\text{max}} \varepsilon_{\text{max}} = 0.315$ with the stress–strain curve (point *B* in Fig. 6-5) yields a peak stress of $\sigma_{\text{max}} = 243$ MPa and a peak strain of 13×10^{-4} . The effective stress concentration factor is

$$K_{\sigma} = \sigma_{\max} / \sigma_{nom} = 243 / 100 = 2.43$$
 (5)

The effective strain concentration factor is

$$K_{\varepsilon} = \frac{13 \times 10^{-4}}{5 \times 10^{-4}} = 2.6 \tag{6}$$

In the local strain approach to fatigue analysis, fatigue life is correlated with the strain history of a point, and knowledge of the true level of strain at the point is necessary. Neuber's rule enables the estimation of local strain levels without using complicated elastic–plastic finite-element analyses.

Figure 6-6: Reducing the effect of the stress concentration of notches and holes: (*a*) Notch shapes arranged in order of their effect on the stress concentration decreasing as you move from left to right and top to bottom; (*b*) asymmetric notch shapes, arranged in the same way as in (*a*); (*c*) holes, arranged in the same way as in (*a*).

6.4 DESIGNING TO MINIMIZE STRESS CONCENTRATION

A qualitative discussion of techniques for avoiding the detrimental effects of stress concentration is given by Leyer [6.6]. As a general rule, force should be transmitted from point to point as smoothly as possible. The lines connecting the force transmission path are sometimes called the *force* (or *stress*) *flow*, although it is arguable if *force flow* has a scientifically based definition. Sharp transitions in the direction of the force flow should be removed by smoothing contours and rounding notch roots. When stress raisers are necessitated by functional requirements, the raisers should be placed in regions of low nominal stress if possible. Figure 6-6 depicts forms of notches and holes in the order in which they cause stress concentration. Figure 6-7 shows how direction of stress flow affects the extent to which a notch causes stress concentration. The configuration in Fig. 6-7b has higher stress levels because of the sharp change in the direction of force flow.

When notches are necessary, removal of material near the notch can alleviate stress concentration effects. Figures 6-8 to 6-13 demonstrate instances where removal of material improves the strength of the member.

A type of stress concentration called an *interface notch* is commonly produced when parts are joined by welding. Figure 6-14 shows examples of interface notches and one way of mitigating the effect. The surfaces where the mating plates touch without weld metal filling, form what is, in effect, a sharp crack that causes stress concentration. Stress concentration also results from poor welding techniques that create small cracks in the weld material or burn pits in the base material.

Figure 6-7: Two parts with the same shape (step in cross section) but differing stress flow patterns can give totally different notch effects and widely differing stress levels at the corner step: (*a*) stress flow is smooth; (*b*) sharp change in the stress flow direction causes high stress.

Figure 6-8: Guiding the lines of stress by means of notches that are not functionally essential is a useful method of reducing the detrimental effects of notches that cannot be avoided. These are termed relief notches. It is assumed here that the bearing surface of the step of (a) is needed functionally. Adding a notch as in (b) can reduce the hazardous effects of the corner of (a).

Figure 6-9: Relief notch where screw thread meets cylindrical body of bolt; (*a*) considerable stress concentration can occur at the step interface; (*b*) use of a smoother interface leads to relief of stress concentration.

Figure 6-10: Alleviation of stress concentration by removal of material, a process that sometimes is relatively easy to machine. (*a*) It is assumed that a notch of the sort shown occurs. In both cases (*b*) and (*c*), the notch is retained and the stress concentration reduced.

Figure 6-11: Reduce the stress concentration in the stepped shaft of (a) by including material such as shown in (b). If this sort of modification is not possible, the undercut shoulder of (c) can help.

Figure 6-12: Removal of material can reduce stress concentration, for example, in bars with collars and holes. (*a*) The bar on the right with the narrowed collar will lead to reduced stress concentration relative to the bar on the left. (*b*) Grooves near a hole can reduce the stress concentration around the hole.

Figure 6-13: Nut designs. These are most important under fatigue loading. From Ref. [6.1], with permission. (*a*) Standard bolt and nut combination. The force flow near the top of the nut is sparse, but in area D the stress flow density is very high. (*b*) Nut with a lip. The force flow on the inner side of the lip is in the same direction as in the bolt and the force flow is more evenly distributed for the whole nut than for case (*a*). The peak stress is relieved. (*c*) "Force flow" is not reversed at all. Thus fatigue strength here is significantly higher than for the other cases.

Figure 6-14: The typical welding joints of (*a*) can be improved by boring out corners as shown in (*b*).

REFERENCES

- 6.1. Pilkey, W. D., Peterson's Stress Concentration Factors, Wiley, New York, 1997.
- 6.2. Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970.
- Maleev, V. L., and Hartman, J. B., *Machine Design*, 3rd ed., International Textbook Co., Scranton, PA, 1954.
- 6.4. Neuber, H., "Theory of Stress Concentration for Shear Strained Prismatic Bodies with Nonlinear Stress–Strain Law," J. Appl. Mech., Vol. 28, Ser. E, No. 4., 1961, pp. 544–550.
- 6.5. Fuchs, H. O., "Discussion: Nominal Stress or Local Strain Approaches to Cumulative Damage," in *Fatigue under Complex Loading*, Society of Automotive Engineers, Warrendale, PA, 1977, pp. 203–207.
- 6.6. Leyer, A., Maschinenkonstruktionslehre, Birkhäuser Verlag, Basel, Switzerland: English language edition. Machine Design, Blackie & Son, London, 1974.
- Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1993.
- 6.8. Juvinall, R. C., Stress, Strain, and Strength, McGraw-Hill, New York, 1967.
- Hooke, C. J., "Numerical Solution of Plane Elastostatic Problems by Point Matching," J. Strain Anal., Vol. 3, 1968, pp. 109–115.
- 6.10. Liebowitz, H., Vandervelt, H., and Sanford, R. J., "Stress Concentrations Due to Sharp Notches," *Exp. Mech.*, Vol. 7, 1967.
- 6.11. Neuber, H., *Theory of Notch Stresses*, Office of Technical Services, U.S. Department of Commerce, Washington, DC, 1961.
- 6.12. Atsumi, "Stress Concentrations in a Strip under Tension and Containing an Infinite Row of Semicircular Notches," Q. J. Mech. Appl. Math., Vol. 11, Pt. 4, 1958.
- 6.13. Durelli, A. J., Lake, R. L., and Phillips, E., "Stress Concentrations Produced by Multiple Semicircular Notches in Infinite Plates under Uniaxial State of Stress," *Proc. SESA*, Vol. 10, No. 1, 1952.
- 6.14. Matthews, G. J., and Hooke, C. J., "Solution of Axisymmetric Torsion Problems by Point Matching," J. Strain Anal., Vol. 6, 1971, pp. 124–134.
- 6.15. Howland, R. C. J., "On the Stresses in the Neighborhood of a Circular Hole in a Strip under Tension," *Philos. Trans. Roy. Soc. Lond. A*, Vol. 229, 1929/1930.
- 6.16. Jones, N., and Hozos, D., "A Study of the Stress around Elliptical Holes in Flat Plates," *Trans. ASME*, J. Eng. Ind., Vol. 93, Ser. B, 1971.
- 6.17. Seika, M., and Ishii, M., "Photoelastic Investigation of the Maximum Stress in a Plate with a Reinforced Circular Hole under Uniaxial Tension," *Trans. ASME, J. Appl. Mech.*, Vol. 86, Ser. E, 1964, pp. 701–703.
- 6.18. Seika, M., and Amano, A., "The Maximum Stress in a Wide Plate with a Reinforced Circular Hole under Uniaxial Tension: Effects of a Boss with Fillet," *Trans. ASME, J. Appl. Mech.*, Vol. 89, Ser. E, 1967, pp. 232–234.

Tables

6-1	Stress Concentration Factors	274
	I. Notches and Grooves	274
	II. Holes	283
	III. Fillets	298
	IV. Miscellaneous Elements	301

TABLE 6-1 STRESS CONCENTRATION FACTORS^a

	Note	ation	
K_t	Theoretical stress concentration factor	$\sigma_{\rm nom}$	Nominal normal stress defined for each
	in elastic range		case (F/L^2)
σ	Applied stress (F/L^2)	$\sigma_{ m max}$	Maximum normal stress at stress raiser (F/L^2)
Р	Applied axial force (F)	$ au_{\rm nom}$	Nominal shear stress defined for each
M	Applied moment (FL)		case (F/L^2)
m_1, m_2, m	Applied moment per unit length (FL/L)	$ au_{ m max}$	Maximum shear stress at stress raiser (F/L^2)
Т	Applied torque (FL)		

Refer to figures for the geometries of the specimens.

I. Notches and Grooves			
Type of Stress Raiser	Loading Condition	Stress Concentration Factor	
1. Elliptical or U-shaped notch in semi-infinite plate	a. Uniaxial tension	$\sigma_{\max} = \sigma_A = K_t \sigma$ $K_t = 0.855 + 2.21 \sqrt{h/r} \text{for } 1 \le h/r \le 361$	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ $	b. Transverse bending $m\left(\begin{array}{c} & & \\ & &$	Elliptical notch only, $\nu = 0.3$ and when $h/t \to \infty$, $\sigma_{\text{max}} = \sigma_A = K_t \sigma, \sigma = 6m/t^2$ $K_t = 0.998 + 0.790\sqrt{h/r}$ for $0 \le h/r \le 7$	
Elliptical notch			
U-shaped notch $\neq k$			

274

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

280

TABLE

<u>6</u>-1

Stress

Concentration Factors

	II. Holes			
Type of Stress Raiser	Loading Condition	Stress Concentration Factor		
1. Single circular hole in infinite plate	a. In-plane normal stress σ_2 σ_1 σ_1 σ_2 σ_1 σ_1 σ_2 σ_1 σ_2 σ_1 σ_2 σ_1 σ_2 σ_1 σ_2 σ_1 σ_2 σ_2 σ_1 σ_2 σ_1 σ_2 σ_1 σ_2 σ_2 σ_1 σ_2 σ_2 σ_1 σ_2 σ_2 σ_1 σ_2 σ_1 σ_2 σ_2 σ_1 σ_2 σ_2 σ_1 σ_2 σ_2 σ_2 σ_2 σ_1 σ_2 σ_2 σ_2 σ_1 σ_2 σ	(1) Uniaxial tension ($\sigma_2 = 0$) $\sigma_{\max} = K_t \sigma_1$ $\sigma_A = 3\sigma_1 \text{ or } K_t = 3$ $\sigma_B = -\sigma_1 \text{ or } K_t = -1$ (2) Biaxial tension $K_t = 3 - \sigma_2/\sigma_1 \text{ for } -1 \le \sigma_2/\sigma_1 \le 1$ For $\sigma_2 = \sigma_1$, $\sigma_A = \sigma_B = 2\sigma_1 \text{ or } K_t = 2$ For $\sigma_2 = -\sigma_1$ (pure shear stress), $\sigma_A = -\sigma_B = 4\sigma_1 \text{ or } K_t = 4$		
	b. Transverse bending m_2 m_1 m_1 m_1 m_2 m_1 m_1 m_2 m_1 m_2 m_1 m_2 m_1 m_2 m_2 m_2 m_1 m_2 m_2 m_2 m_1 m_2 m_2 m_2 m_2 m_1 m_2 m_2 m_2 m_2 m_1 m_2 m_2 m_2 m_1 m_2 m_2 m_2 m_1 m_2	$\sigma_{\max} = K_t \sigma, \qquad \sigma = 6m/t^2, \qquad \nu = 0.3$ (1) Simple bending $(m_1 = m, m_2 = 0)$ For $0 \le d/t \le 7.0, \sigma_{\max} = \sigma_A$ $K_t = 3.000 - 0.947\sqrt{d/t} + 0.192d/t$ (2) Cylindrical bending $(m_1 = m, m_2 = \nu m)$ For $0 \le d/t \le 7.0, \sigma_{\max} = \sigma_A$ $K_t = 2.700 - 0.647\sqrt{d/t} + 0.129d/t$ (3) Isotropic bending $(m_1 = m_2 = m), \sigma_{\max} = \sigma_A$ $K_t = 2$ (independent of d/t)		
	c. Twisting moment (see preceding figure and definitions)	$\sigma_{\max} = K_t \sigma, \qquad \sigma = 6m/t^2$ $m_1 = m, \qquad m_2 = -m, \qquad \nu = 0.3$ For $0 \le d/t \le 7.0$, $K_t = 4.000 - 1.772\sqrt{d/t} + 0.341d/t$		

 $K_t = 2d/D(\alpha = 30^\circ)$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

TABLE 6-1		c. Transverse b m_1
Stress Concentration Factors		
I Factors	3. Eccentric circular hole in finite-width plane $\overbrace{\overbrace{c}}^{\uparrow} \overbrace{e}^{\downarrow} \overbrace{D}^{\downarrow}$	a. Axial tension

	c. Transverse bending	$\sigma_{\text{max}} = \sigma_A = K_t \sigma_{\text{nom}}, \qquad \sigma_{\text{nom}} = 6mD/(D-d)t^2$ For $0 \le d/D \le 0.3$, $v = 0.3$ and $1 \le d/t \le 7$
		(1) Simple bending $(m_1 = m, m_2 = 0)$ $K_t = \left[1.793 + \frac{0.131}{d/t} + \frac{2.052}{(d/t)^2} - \frac{1.019}{(d/t)^3}\right]$
	m ₂	$\times \left[1 - 1.04 \left(\frac{d}{D}\right) + 1.22 \left(\frac{d}{D}\right)^2\right]$
		(2) Cylindrical bending $(m_1 = m, m_2 = \nu m)$
		$K_t = \left[1.856 + \frac{0.317}{d/t} + \frac{0.942}{(d/t)^2} - \frac{0.415}{(d/t)^3}\right]$
		$\times \left[1 - 1.04 \left(\frac{d}{D}\right) + 1.22 \left(\frac{d}{D}\right)^2\right]$
	a. Axial tension	Stress on section AB is
ole e	$ \begin{array}{c} \\ \sigma \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \end{array} \begin{array}{c} \\ B \\ \hline \\ B \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	$\sigma_{\rm nom} = \frac{\sigma \sqrt{1 - (d/2c)^2}}{1 - d/2c} \frac{1 - c/D}{1 - (c/d) \left[2 - \sqrt{1 - (d/2c)^2}\right]}$ $\sigma_{\rm max} = \sigma_B = K_t \sigma_{\rm nom}$
	Ă	$K_t = 3.000 - 3.140 \left(\frac{d}{2c}\right) + 3.667 \left(\frac{d}{2c}\right)^2 - 1.527 \left(\frac{d}{2c}\right)^3$

TABLE 6-1 (continued) STF	RESS CONCENTRATION FACTORS: Holes	
	b. In-plane bending $M\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\sigma_{\max} = \max(\sigma_A, \sigma_B)$ $\sigma_B = K_{t_B}\sigma_{\text{nom}}, \sigma_{\text{nom}} = 6M/D^2t$ $K_{t_B} = C_1 + C_2 \frac{c}{e} + C_3 \left(\frac{c}{e}\right)^2$ $\frac{0 \le d/2c \le 0.5, 0 \le c/e \le 1.0}{C_1 3.000 - 0.631(d/2c) + 4.007(d/2c)^2}$ $C_2 -5.083 + 4.067(d/2c) - 2.795(d/2c)^2$ $C_3 2.114 - 1.682(d/2c) - 0.273(d/2c)^2$ $\sigma_A = K_{t_A}\sigma_{\text{nom}}, \sigma_{\text{nom}} = 6M/D^2t$ $K_{t_A} = C_1' + C_2' \frac{c}{e} + C_3' \left(\frac{c}{e}\right)^2$ $C_1' 1.0286 - 0.1638(d/2c) + 2.702(d/2c)^2$ $C_2' -0.05863 - 0.1335(d/2c) - 1.8747(d/2c)^2$ $C_3' 0.18883 - 0.89219(d/2c) + 1.5189(d/2c)^2$
4. Two equal circular holes in infinite plate	a. Uniaxial tension parallel to row of holes $(\sigma_1 = \sigma, \sigma_2 = 0)$	$\sigma_{\max} = K_t \sigma \text{ for } 0 \le d/L \le 1$ $K_t = 3.000 - 0.712 \left(\frac{d}{L}\right) + 0.271 \left(\frac{d}{L}\right)^2$

286

TABLE 6-1

Stress Concentration Factors

TABLE 6-1 (continued)	STRESS CONCENTRATION FACTORS: Holes

5. Single row of circular holes in infinite plate	a. Uniaxial tension normal to row of holes $(\sigma_1 = 0, \ \sigma_2 = \sigma)$	$\sigma_{\max} = \sigma_B = K_t \sigma$ $K_t = 3.0000 - 0.9916 \left(\frac{d}{L}\right) - 2.5899 \left(\frac{d}{L}\right)^2 + 2.2613 \left(\frac{d}{L}\right)^3$ for $0 \le d/L \le 1$
$\begin{array}{c} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ \hline \hline$	b. Uniaxial tension parallel to row of holes $(\sigma_1 = \sigma, \ \sigma_2 = 0)$	$\sigma_{\max} = \sigma_A = K_t \sigma_{\text{nom}}, \qquad \sigma_{\text{nom}} = \sigma/(1 - d/L) K_t = 3.000 - 3.095 \left(\frac{d}{L}\right) + 0.309 \left(\frac{d}{L}\right)^2 + 0.786 \left(\frac{d}{L}\right)^3 for 0 \le d/L \le 1$
$ \overset{\sigma_1}{\leftarrow} \left(\bigcirc (A, A) \atop k \downarrow k$	c. Biaxial tension $(\sigma_1 = \sigma_2 = \sigma)$	$\sigma_{\max} = \sigma_A = K_t \sigma_{\text{nom}}, \qquad \sigma_{\text{nom}} = \sigma/(1 - d/L)$ $K_t = 2.000 - 1.597 \left(\frac{d}{L}\right) + 0.934 \left(\frac{d}{L}\right)^2 - 0.337 \left(\frac{d}{L}\right)^3$ for $0 \le d/L \le 1$

TABLE 6-1 (continued) **STRESS CONCENTRATION FACTORS: Holes**

TABLE

<u>6</u>

Stress

Concentration Factors

TABLE 6-1 (continued) STRESS CO	ONCENTRATION FACTORS: Holes	
8.	Axial tension	Stress on section AB is
Eccentric elliptical hole in finite-width plate		$\sigma_{\rm nom} = \frac{\sqrt{1-a/c}}{1-a/c} \frac{1-c/D}{1-(c/D) \left[2-\sqrt{1-(a/c)^2}\right]}$
\leftarrow \uparrow $2a + $ \rightarrow		and
$ \begin{array}{c} \sigma & & \\ \bullet & & \\ \bullet & & \\ \downarrow c & A \\ \downarrow \downarrow & \\ \bullet & \downarrow \\ \downarrow \downarrow & \\ \bullet & \\ $		$\sigma_{\rm max} = K_t \sigma_{\rm nom} \qquad \qquad$
B		$K_t = C_1 + C_2 \frac{a}{c} + C_3 \left(\frac{a}{c}\right)^2 + C_4 \left(\frac{a}{c}\right)^3$
		for $1.0 \le a/b \le 8.0$ and $0 \le a/c \le 1$
		Expressions for C_1 , C_2 , C_3 , and C_4 from case 7a can be used.
9.	Uniaxial tension	$\sigma_{\max} = K_t \sigma_{nom}, \qquad \sigma_{nom} = \sigma/(1 - 2a/L)$
Infinite row of elliptical holes in infinite-width plate		For $0 \le 2a/L \le 0.7$ and $1 \le a/b \le 10$,
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		$K_t = \left[1.002 - 1.016\left(\frac{2a}{L}\right) + 0.253\left(\frac{2a}{L}\right)^2\right] \left(1 + \frac{2a}{b}\right)$
$\begin{array}{c} 1 & 2b \\ \hline $		
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$		

10. Circular hole with opposite semicircular lobes in finite-width plate $\sigma \leftarrow \bigcup_{p \leftarrow R > 2b} \rightarrow \sigma$	Axial tension	$\sigma_{\max} = K_t \sigma_{\text{nom}}, \qquad \sigma_{\text{nom}} = \sigma/(1 - 2b/D)$ For $0 \le 2b/D \le 1$, $K_t = K_{t0} \left[1 - \frac{2b}{D} + \left(\frac{6}{K_{t0}} - 1\right) \left(\frac{b}{D}\right)^2 + \left(1 - \frac{4}{K_{t0}}\right) \left(\frac{b}{D}\right)^3 \right]$ where for $0.2 < r/R \le 4.0$, $K_{t0} = \frac{\sigma_{\max}}{\sigma} = 2.2889 + \frac{1.6355}{\sqrt{r/R}} - \frac{0.0157}{r/R}$ For infinitely wide plate, $K_t = K_{t0}$.
11. Rectangular hole with rounded corners in infinite-width plate r r r r r r r r r r	Uniaxial tension	$\sigma_{\max} = K_t \sigma$ $K_t = C_1 + C_2 \frac{a}{b} + C_3 \left(\frac{a}{b}\right)^2 + C_4 \left(\frac{a}{b}\right)^3$ $\frac{0.05 \le r/2a \le 0.5, 0.2 \le a/b \le 1.0}{C_1 14.815 - 22.308\sqrt{r/2a} + 16.298(r/2a)}$ $C_2 -11.201 - 13.789\sqrt{r/2a} + 19.200(r/2a)$ $C_3 0.2020 + 54.620\sqrt{r/2a} - 54.748(r/2a)$ $C_4 3.232 - 32.530\sqrt{r/2a} + 30.964(r/2a)$

12. Slot having semicircular ends 2b D 2b D	a. Axial tension $a_{eq} = \sqrt{rb}$ where a_{eq} is width of equivalent ellipse	If the openings such as two holes connected by a slit or an ovaloid are enveloped by an ellipse with the same $2b$ and r , K_t can be approximated by using an equivalent ellipse having the same dimensions $2b$ and r . See cases 6a and 8.
	b. In-plane bending $a_{\rm eq} = \sqrt{rb}$	Use an equivalent ellipse. See case 6b.
13. Equilateral triangular hole with round corners in infinite-width plate σ_2	a. Uniaxial tension $(\sigma_1 = \sigma, \ \sigma_2 = 0)$	$\sigma_{\max} = K_t \sigma$ For 0.25 $\leq r/R \leq 0.75$ $K_t = 6.191 - 7.215(r/R) + 5.492(r/R)^2$
	b. Biaxial tension $(\sigma_1 = \sigma, \ \sigma_2 = \sigma/2)$	$\sigma_{\max} = K_t \sigma$ For 0.25 $\leq r/R \leq 0.75$ $K_t = 6.364 - 8.885(r/R) + 6.494(r/R)^2$
$ \begin{array}{c} $	c. Biaxial tension $(\sigma_1 = \sigma_2 = \sigma)$	$\sigma_{\max} = K_t \sigma$ For $0.25 \le r/R \le 0.75$ $K_t = 7.067 - 11.099(r/R) + 7.394(r/R)^2$

14. Single symmetrically reinforced circular hole in finite-width plate in tension	a. Without fillet $(r = 0)$	$\sigma_{\text{max}} = \sigma_A = K_t \sigma$ where $\sigma_{\text{max}} =$ maximum mean stress for thickness sliced off to plate thickness t. For $b/t = 5.0$,
$ \begin{array}{c} $		$K_{t} = C_{1} + C_{2} \left(\frac{1}{h/t}\right) + C_{3} \left(\frac{1}{h/t}\right)^{2}$ $\frac{D/b \ge 4.0, 1 \le h/t \le 5 \text{and} 0.3 \le a/b \le 0}{C_{1} 1.869 + 1.196(a/b) - 0.393(a/b)^{2}}$ $C_{2} -3.042 + 6.476(a/b) - 4.871(a/b)^{2}$ $C_{3} 4.036 - 7.229(a/b) + 5.180(a/b)^{2}$
	b. With fillet $(r \neq 0)$	For $r/t \ge 0.6$, $0.3 \le a/b \le 0.7$, and $h/t \ge 3.0$, $K_t = 3.000 - 2.206\sqrt{R} + 0.948R - 0.142R\sqrt{R}$ where $R = \frac{\text{cross-sectional area of added reinforcement}}{\text{cross-sectional area of hole (without added reinforcement}}$ $R = \left(\frac{b}{a} - 1\right) \left(\frac{h}{t} - 1\right) + (4 - \pi)\frac{r^2}{at}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

TABLE

<u>6</u>-1

Stress

Concentration Factors

TABLE 6-1 (continued) STRESS C	ONCENTRATION FACTORS: Fillets		
III. Fillets			
Type of Stress Raiser	Loading Conditions	Stress Concentration Factor	
1. Opposite shoulder fillets in	a. Axial tension	$\sigma_{\max} = K_t \sigma_{nom}, \qquad \sigma_{nom} = P/td$	
stepped flat bar	$P \leftarrow \frown \rightarrow P$	$K_t = C_1 + C_2 \frac{2h}{D} + C_3 \left(\frac{2h}{D}\right)^2 + C_4 \left(\frac{2h}{D}\right)^3$	
		where $\frac{L}{D} > -1.89 \left(\frac{r}{d} - 0.15\right) + 5.5$	
L +		$0.1 \le h/r \le 2.0$ $2.0 \le h/r \le 20.0$	
		$C_1 = 1.006 + 1.008\sqrt{h/r} - 0.044h/r = 1.020 + 1.009\sqrt{h/r} - 0.048h/r$	
		$ \begin{bmatrix} C_2 \\ -0.115 - 0.584\sqrt{h/r} + 0.315h/r \\ 0.245 - 1.006\sqrt{h/r} - 0.257h/r \\ -3.459 + 1.266\sqrt{h/r} - 0.016h/r \end{bmatrix} $	
		$\begin{array}{c} C_{3} \\ C_{4} \\ -0.135 + 0.582\sqrt{h/r} - 0.017h/r \\ \end{array} \begin{array}{c} -3.439 + 1.260\sqrt{h/r} - 0.010h/r \\ 3.505 - 2.109\sqrt{h/r} + 0.069h/r \\ \end{array}$	
		For cases where $L/D < -1.89(r/d - 0.15) + 5.5$, see Ref. [6.1]	
	b. In-plane bending	$\sigma_{\max} = K_t \sigma_{\text{nom}}, \qquad \sigma_{\text{nom}} = 6M/td^2$	
		$K_t = C_1 + C_2 \frac{2h}{D} + C_3 \left(\frac{2h}{D}\right)^2 + C_4 \left(\frac{2h}{D}\right)^3$	
		where $\frac{L}{D} > -2.05 \left(\frac{r}{d} - 0.025\right) + 2.0$	
		$0.1 \le h/r \le 2.0$ $2.0 \le h/r \le 20.0$	
		C_1 $1.006 + 0.967\sqrt{h/r} + 0.013h/r$ $1.058 + 1.002\sqrt{h/r} - 0.038h/r$	
		$\begin{bmatrix} C_2 \\ C_3 \end{bmatrix} = \frac{-0.270 - 2.372\sqrt{h/r} + 0.708h/r}{0.662 + 1.157\sqrt{h/r} - 0.908h/r} = \frac{-3.652 + 1.639\sqrt{h/r} - 0.436h/r}{6.170 - 5.687\sqrt{h/r} + 1.175h/r}$	
		$\begin{bmatrix} C_3 \\ C_4 \end{bmatrix} = \frac{0.002 + 1.13}{\sqrt{n/r}} = \frac{0.908n/r}{1.000} = \frac{0.170 - 3.08}{\sqrt{n/r}} = \frac{0.0170 - 3.08}{\sqrt{n/r}} = 0.0170 - 3.0$	

TABLE 6-1 (continued)	STRESS CONCENTRATION FACTORS: Fill	lets
	c. Torsion	$\tau_{\rm max} = K_t \tau_{\rm nom}, \qquad \tau_{\rm nom} = 16T/\pi d^3$
		$\tau_{\max} = K_t \tau_{\text{nom}}, \qquad \tau_{\text{nom}} = 16T/\pi d^3$ $K_t = C_1 + C_2 \frac{2h}{D} + C_3 \left(\frac{2h}{D}\right)^2 + C_4 \left(\frac{2h}{D}\right)^3$
		$0.25 \le h/r \le 4.0$
		$\overline{C_1}$ 0.905 + 0.783 $\sqrt{h/r}$ - 0.075 h/r
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		C_3 1.557 + 1.073 $\sqrt{h/r}$ - 0.578 h/r
		C_4 -1.061 + 0.171 $\sqrt{h/r}$ + 0.086 h/r

	IV. Miscelland	eous Elements
Type of Stress Raiser	Loading Conditions	Stress Concentration Factor
1. Round shaft with semicircular end key seat	a. Bending $ \begin{array}{c} & & & \\ $	$\sigma_{\max} = K_t \sigma, \qquad \sigma = 32M/\pi D^3$ $b = \frac{1}{4}D, \qquad h = \frac{1}{8}D, \qquad \alpha = 10^\circ, \qquad \beta = 15^\circ$ (1) At location A on surface: $K_{tA} = 1.6$ (2) At location B at end of keyway: $K_{tB} = 1.426 + 0.1643 \left(\frac{0.1}{r/D}\right) - 0.0019 \left(\frac{0.1}{r/D}\right)^2$ where $0.005 \le r/D \le 0.04$ $D \le 6.5 \text{ in.}$ h/D = 0.125 For $D > 6.5 \text{ in., it is suggested that the } K_{tB} \text{ values for}$ r/D = 0.0208 be used.
	b. Torsion	$h = \frac{1}{8}D, \qquad b = D/r, \qquad \alpha = 15^{\circ}, \qquad \beta = 50^{\circ}$ (1) At location A on surface: $K_{tA} = \sigma_{\max}/\tau \simeq 3.4, \qquad \tau = 16T/\pi D^{3}$ (2) At location B in fillet: $K_{tB} = \sigma_{\max}/\tau$ $= 1.953 + 0.1434 \left(\frac{0.1}{r/D}\right) - 0.0021 \left(\frac{0.1}{r/D}\right)^{2}$ for $0.005 \le r/D \le 0.07$

TABLE 6-1 (continued) S	TRESS CONCENTRATION FACTORS: Miscellane	eous Elements
2. Splined shaft	a. Torsion 0.079D D D D D D D D	For an eight-tooth spline $K_{tS} = \tau_{\max}/\tau, \qquad \tau = 16T/\pi D^{3}$ For $0.01 \le r/D \le 0.04$ $K_{tS} = 6.083 - 14.775 \left(\frac{10r}{D}\right) + 18.250 \left(\frac{10r}{D}\right)^{2}$
3. Gear teeth $W \xrightarrow{\phi} B \xrightarrow{h} h$	Bending plus some compressionA and C are points of tangency of inscribed parabola ABC with tooth profile $b =$ tooth width normal to plane of figure $r_f =$ minimum radius of tooth fillet $W =$ load per unit length of tooth face $\phi =$ angle between load W and normal to tooth face	Maximum stress occurs at fillet on tension side at base of tooth $\sigma_{\max} = K_t \sigma_{nom}, \qquad \sigma_{nom} = \frac{6Wh}{bt^2} - \frac{W}{bt} \tan \phi$ For 14.5° pressure angle, $K_t = 0.22 + \left(\frac{t}{r_f}\right)^{0.2} \left(\frac{t}{h}\right)^{0.4}$ For 20° pressure angle, $K_t = 0.18 + \left(\frac{t}{r_f}\right)^{0.15} \left(\frac{t}{h}\right)^{0.45}$

TABLE 6-1 Stress Concentration Factors

TABLE 6-1 (continued)	STRESS CONCENTRATION FACTORS: Miscellaneous Elements	
-----------------------	--	--

$\frac{d}{r} = \frac{d}{h}$ $0.75 \le \frac{d}{r} \le 2.0$	When $a = 3r$, $K_{tA} = 1.143 + 0.074 \left(\frac{d}{r}\right) + 0.026 \left(\frac{d}{r}\right)^3$ $K_{tB} = 1.276$	
	When $a = r$, $K_{tA} = 0.714 + 1.237 \left(\frac{d}{r}\right) - 0.891 \left(\frac{d}{r}\right)^2 + 0.239 \left(\frac{d}{r}\right)^3$ $K_{tB} = 1.374$	
$\frac{d}{r} = \frac{h}{r}$ $1.0 \le \frac{d}{r} \le 7.0$	For $a = 3r$, $K_{tA} = 0.982 + 0.303 \left(\frac{d}{r}\right) - 0.017 \left(\frac{d}{r}\right)^2$ $K_{tB} = 1.020 + 0.235 \left(\frac{d}{r}\right) - 0.015 \left(\frac{d}{r}\right)^2$	
	For $a = r$, $K_{tA} = 1.010 + 0.281 \left(\frac{d}{r}\right) - 0.012 \left(\frac{d}{r}\right)^2$ $K_{tB} = 0.200 + 1.374 \left(\frac{d}{r}\right) - 0.412 \left(\frac{d}{r}\right)^2 + 0.037 \left(\frac{d}{r}\right)^3$	

^aMuch of this material is based on Ref. [6.1].

305